Merge pull request #10 from artivis/mrpt_free

[WIP] Remove MRPT dependency
This commit is contained in:
Javier G. Monroy
2018-11-21 13:17:48 +01:00
committed by GitHub
6 changed files with 1020 additions and 993 deletions

View File

@@ -19,22 +19,12 @@ find_package(catkin REQUIRED COMPONENTS
sensor_msgs sensor_msgs
std_msgs std_msgs
tf tf
cmake_modules
) )
set(MRPT_DONT_USE_DBG_LIBS 1)
## System dependencies are found with CMake's conventions ## System dependencies are found with CMake's conventions
find_package(Boost REQUIRED COMPONENTS system) find_package(Boost REQUIRED COMPONENTS system)
find_package(cmake_modules REQUIRED)
find_package(Eigen3 REQUIRED) find_package(Eigen3 REQUIRED)
find_package(MRPT REQUIRED base obs) # maps slam
#include_directories(${MRPT_INCLUDE_DIRS})
MESSAGE( STATUS "MRPT_INCLUDE_DIRS: " ${MRPT_INCLUDE_DIRS})
#link_directories(${MRPT_LIBRARY_DIRS})
MESSAGE( STATUS "MRPT_LIBRARY_DIRS: " ${MRPT_LIBRARIES})
################################### ###################################
## catkin specific configuration ## ## catkin specific configuration ##
@@ -46,10 +36,10 @@ MESSAGE( STATUS "MRPT_LIBRARY_DIRS: " ${MRPT_LIBRARIES})
## CATKIN_DEPENDS: catkin_packages dependent projects also need ## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need ## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package( catkin_package(
INCLUDE_DIRS include INCLUDE_DIRS include ${EIGEN3_INCLUDE_DIRS}
LIBRARIES ${PROJECT_NAME} LIBRARIES ${PROJECT_NAME}
CATKIN_DEPENDS nav_msgs roscpp sensor_msgs std_msgs tf CATKIN_DEPENDS nav_msgs roscpp sensor_msgs std_msgs tf
DEPENDS MRPT DEPENDS #Eigen3
) )
## Specify additional locations of header files ## Specify additional locations of header files
@@ -60,15 +50,12 @@ include_directories(
SYSTEM SYSTEM
${catkin_INCLUDE_DIRS} ${catkin_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS} ${Boost_INCLUDE_DIRS}
${EIGEN_INCLUDE_DIRS} ${EIGEN3_INCLUDE_DIRS}
${MRPT_INCLUDE_DIRS}
) )
## Declare a cpp library ## Declare a cpp library
add_library(${PROJECT_NAME} add_library(${PROJECT_NAME} src/CLaserOdometry2D.cpp)
src/CLaserOdometry2D.cpp target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES})
)
target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES} ${MRPT_LIBS})
## Declare a cpp executable ## Declare a cpp executable
add_executable(rf2o_laser_odometry_node src/CLaserOdometry2DNode.cpp) add_executable(rf2o_laser_odometry_node src/CLaserOdometry2DNode.cpp)

View File

@@ -6,8 +6,3 @@ RF2O is a fast and precise method to estimate the planar motion of a lidar from
Its very low computational cost (0.9 milliseconds on a single CPU core) together whit its high precission, makes RF2O a suitable method for those robotic applications that require planar odometry. Its very low computational cost (0.9 milliseconds on a single CPU core) together whit its high precission, makes RF2O a suitable method for those robotic applications that require planar odometry.
For full description of the algorithm, please refer to: **Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach. ICRA 2016** Available at: http://mapir.isa.uma.es/work/rf2o For full description of the algorithm, please refer to: **Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach. ICRA 2016** Available at: http://mapir.isa.uma.es/work/rf2o
# Requirements
RF2O core is implemented within the **Mobile Robot Programming Toolkit** [MRPT](http://www.mrpt.org/), so it is necessary to install this powerful library (see instructions [here](http://www.mrpt.org/download-mrpt/))
So far RF2O has been tested with the Ubuntu official repository version (MRPT v1.3), and we are working to update it to MRPT v.1.9

View File

@@ -11,71 +11,91 @@
* *
* Maintainer: Javier G. Monroy * Maintainer: Javier G. Monroy
* MAPIR group: http://mapir.isa.uma.es/ * MAPIR group: http://mapir.isa.uma.es/
*
* Modifications: Jeremie Deray
******************************************************************************************** */ ******************************************************************************************** */
#ifndef CLaserOdometry2D_H #ifndef CLaserOdometry2D_H
#define CLaserOdometry2D_H #define CLaserOdometry2D_H
#include <ros/ros.h> // std header
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/LaserScan.h>
// MRPT related headers
#include <mrpt/version.h>
#if MRPT_VERSION>=0x130
# include <mrpt/obs/CObservation2DRangeScan.h>
# include <mrpt/obs/CObservationOdometry.h>
typedef mrpt::obs::CObservation2DRangeScan CObservation2DRangeScan;
#else
# include <mrpt/slam/CObservation2DRangeScan.h>
# include <mrpt/slam/CObservationOdometry.h>
typedef mrpt::poses::CObservation2DRangeScan CObservation2DRangeScan;
#endif
#if MRPT_VERSION<0x150
# include <mrpt/system/threads.h>
#endif
#include <mrpt/system/os.h>
#include <mrpt/poses/CPose3D.h>
#include <mrpt/utils.h>
//#include <mrpt/opengl.h>
#include <mrpt/math/CHistogram.h>
#include <boost/bind.hpp>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>
#include <numeric> #include <numeric>
// ROS headers
#include <ros/ros.h>
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/LaserScan.h>
// Eigen headers
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <unsupported/Eigen/MatrixFunctions>
namespace rf2o {
template <typename T>
inline T sign(const T x) { return x<T(0) ? -1:1; }
template <typename Derived>
inline typename Eigen::MatrixBase<Derived>::Scalar
getYaw(const Eigen::MatrixBase<Derived>& r)
{
return std::atan2( r(1, 0), r(0, 0) );
}
template<typename T>
inline Eigen::Matrix<T, 3, 3> matrixRollPitchYaw(const T roll,
const T pitch,
const T yaw)
{
const Eigen::AngleAxis<T> ax = Eigen::AngleAxis<T>(roll, Eigen::Matrix<T, 3, 1>::UnitX());
const Eigen::AngleAxis<T> ay = Eigen::AngleAxis<T>(pitch, Eigen::Matrix<T, 3, 1>::UnitY());
const Eigen::AngleAxis<T> az = Eigen::AngleAxis<T>(yaw, Eigen::Matrix<T, 3, 1>::UnitZ());
return (az * ay * ax).toRotationMatrix().matrix();
}
template<typename T>
inline Eigen::Matrix<T, 3, 3> matrixYaw(const T yaw)
{
return matrixRollPitchYaw<T>(0, 0, yaw);
}
class CLaserOdometry2D class CLaserOdometry2D
{ {
public: public:
CLaserOdometry2D();
~CLaserOdometry2D();
void Init(const sensor_msgs::LaserScan& scan, using Scalar = float;
using Pose2d = Eigen::Isometry2d;
using Pose3d = Eigen::Isometry3d;
using MatrixS31 = Eigen::Matrix<Scalar, 3, 1>;
using IncrementCov = Eigen::Matrix<Scalar, 3, 3>;
CLaserOdometry2D();
virtual ~CLaserOdometry2D() = default;
void init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose); const geometry_msgs::Pose& initial_robot_pose);
bool is_initialized(); bool is_initialized();
void odometryCalculation(const sensor_msgs::LaserScan& scan); bool odometryCalculation(const sensor_msgs::LaserScan& scan);
void setLaserPose(const mrpt::poses::CPose3D& laser_pose); void setLaserPose(const Pose3d& laser_pose);
const mrpt::poses::CPose3D& getIncrement() const; const Pose3d& getIncrement() const;
const Eigen::Matrix<float, 3, 3>& getIncrementCovariance() const; const IncrementCov& getIncrementCovariance() const;
mrpt::poses::CPose3D& getPose(); Pose3d& getPose();
const mrpt::poses::CPose3D& getPose() const; const Pose3d& getPose() const;
protected: protected:
bool verbose,module_initialized,first_laser_scan; bool verbose, module_initialized, first_laser_scan;
// Internal Data // Internal Data
std::vector<Eigen::MatrixXf> range; std::vector<Eigen::MatrixXf> range;
@@ -102,10 +122,9 @@ protected:
Eigen::MatrixXf A,Aw; Eigen::MatrixXf A,Aw;
Eigen::MatrixXf B,Bw; Eigen::MatrixXf B,Bw;
Eigen::Matrix<float, 3, 1> Var; //3 unknowns: vx, vy, w
Eigen::Matrix<float, 3, 3> cov_odo;
MatrixS31 Var; //3 unknowns: vx, vy, w
IncrementCov cov_odo;
//std::string LaserVarName; //Name of the topic containing the scan lasers \laser_scan //std::string LaserVarName; //Name of the topic containing the scan lasers \laser_scan
float fps; //In Hz float fps; //In Hz
@@ -121,30 +140,26 @@ protected:
double lin_speed, ang_speed; double lin_speed, ang_speed;
//mrpt::gui::CDisplayWindowPlots window; ros::WallDuration m_runtime;
mrpt::utils::CTicTac m_clock;
float m_runtime;
ros::Time last_odom_time, current_scan_time; ros::Time last_odom_time, current_scan_time;
mrpt::math::CMatrixFloat31 kai_abs; MatrixS31 kai_abs_;
mrpt::math::CMatrixFloat31 kai_loc; MatrixS31 kai_loc_;
mrpt::math::CMatrixFloat31 kai_loc_old; MatrixS31 kai_loc_old_;
mrpt::math::CMatrixFloat31 kai_loc_level; MatrixS31 kai_loc_level_;
mrpt::poses::CPose3D last_increment; Pose3d last_increment_;
Pose3d laser_pose_on_robot_;
Pose3d laser_pose_on_robot_inv_;
Pose3d laser_pose_;
Pose3d laser_oldpose_;
Pose3d robot_pose_;
Pose3d robot_oldpose_;
mrpt::poses::CPose3D laser_pose_on_robot;
mrpt::poses::CPose3D laser_pose_on_robot_inv;
mrpt::poses::CPose3D laser_pose;
mrpt::poses::CPose3D laser_oldpose;
mrpt::poses::CPose3D robot_pose;
mrpt::poses::CPose3D robot_oldpose;
bool test; bool test;
std::vector<double> last_m_lin_speeds; std::vector<double> last_m_lin_speeds;
std::vector<double> last_m_ang_speeds; std::vector<double> last_m_ang_speeds;
// Methods // Methods
void createImagePyramid(); void createImagePyramid();
void calculateCoord(); void calculateCoord();
@@ -155,9 +170,11 @@ protected:
void findNullPoints(); void findNullPoints();
void solveSystemOneLevel(); void solveSystemOneLevel();
void solveSystemNonLinear(); void solveSystemNonLinear();
void filterLevelSolution(); bool filterLevelSolution();
void PoseUpdate(); void PoseUpdate();
void Reset(mrpt::poses::CPose3D ini_pose, CObservation2DRangeScan scan); void Reset(const Pose3d& ini_pose/*, CObservation2DRangeScan scan*/);
}; };
#endif } /* namespace rf2o */
#endif // CLaserOdometry2D_H

View File

@@ -24,8 +24,7 @@
<build_depend>tf</build_depend> <build_depend>tf</build_depend>
<build_depend>cmake_modules</build_depend> <!-- A common repository for CMake Modules which are not distributed with CMake but are commonly used by ROS packages. --> <build_depend>cmake_modules</build_depend> <!-- A common repository for CMake Modules which are not distributed with CMake but are commonly used by ROS packages. -->
<!-- https://github.com/ros/cmake_modules/blob/0.3-devel/README.md --> <!-- https://github.com/ros/cmake_modules/blob/0.3-devel/README.md -->
<build_depend>mrpt</build_depend> <!-- Depend on mrpt system pkgs: http://www.mrpt.org/ --> <build_depend>eigen</build_depend>
<run_depend>nav_msgs</run_depend> <run_depend>nav_msgs</run_depend>
<run_depend>roscpp</run_depend> <run_depend>roscpp</run_depend>
@@ -33,6 +32,6 @@
<run_depend>std_msgs</run_depend> <run_depend>std_msgs</run_depend>
<run_depend>tf</run_depend> <run_depend>tf</run_depend>
<run_depend>cmake_modules</run_depend> <!-- For aditional dependencies such as Eigen --> <run_depend>cmake_modules</run_depend> <!-- For aditional dependencies such as Eigen -->
<run_depend>mrpt</run_depend> <!-- Depend on mrpt system pkgs --> <run_depend>eigen</run_depend>
</package> </package>

View File

@@ -11,34 +11,39 @@
* *
* Maintainer: Javier G. Monroy * Maintainer: Javier G. Monroy
* MAPIR group: http://mapir.isa.uma.es/ * MAPIR group: http://mapir.isa.uma.es/
*
* Modifications: Jeremie Deray
******************************************************************************************** */ ******************************************************************************************** */
#include "rf2o_laser_odometry/CLaserOdometry2D.h" #include "rf2o_laser_odometry/CLaserOdometry2D.h"
namespace rf2o {
// -------------------------------------------- // --------------------------------------------
// CLaserOdometry2D // CLaserOdometry2D
//--------------------------------------------- //---------------------------------------------
CLaserOdometry2D::CLaserOdometry2D() : CLaserOdometry2D::CLaserOdometry2D() :
verbose(false),
module_initialized(false), module_initialized(false),
first_laser_scan(true) first_laser_scan(true),
last_increment_(Pose3d::Identity()),
laser_pose_on_robot_(Pose3d::Identity()),
laser_pose_on_robot_inv_(Pose3d::Identity()),
laser_pose_(Pose3d::Identity()),
laser_oldpose_(Pose3d::Identity()),
robot_pose_(Pose3d::Identity()),
robot_oldpose_(Pose3d::Identity())
{ {
// //
} }
void CLaserOdometry2D::setLaserPose(const Pose3d& laser_pose)
CLaserOdometry2D::~CLaserOdometry2D()
{
//
}
void CLaserOdometry2D::setLaserPose(const mrpt::poses::CPose3D& laser_pose)
{ {
//Set laser pose on the robot //Set laser pose on the robot
laser_pose_on_robot = laser_pose; laser_pose_on_robot_ = laser_pose;
laser_pose_on_robot_inv = laser_pose_on_robot; laser_pose_on_robot_inv_ = laser_pose_on_robot_.inverse();
laser_pose_on_robot_inv.inverse();
} }
bool CLaserOdometry2D::is_initialized() bool CLaserOdometry2D::is_initialized()
@@ -46,7 +51,7 @@ bool CLaserOdometry2D::is_initialized()
return module_initialized; return module_initialized;
} }
void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan, void CLaserOdometry2D::init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose) const geometry_msgs::Pose& initial_robot_pose)
{ {
//Got an initial scan laser, obtain its parametes //Got an initial scan laser, obtain its parametes
@@ -54,35 +59,31 @@ void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
width = scan.ranges.size(); // Num of samples (size) of the scan laser width = scan.ranges.size(); // Num of samples (size) of the scan laser
cols = width; // Max reolution. Should be similar to the width parameter cols = width; // Max resolution. Should be similar to the width parameter
fovh = fabs(scan.angle_max - scan.angle_min); // Horizontal Laser's FOV fovh = std::abs(scan.angle_max - scan.angle_min); // Horizontal Laser's FOV
ctf_levels = 5; // Coarse-to-Fine levels ctf_levels = 5; // Coarse-to-Fine levels
iter_irls = 5; //Num iterations to solve iterative reweighted least squares iter_irls = 5; //Num iterations to solve iterative reweighted least squares
//Robot initial pose (see MQTT:bridge) Pose3d robot_initial_pose = Pose3d::Identity();
mrpt::poses::CPose3D robotInitialPose;
geometry_msgs::Pose _src = initial_robot_pose;
robotInitialPose.x(_src.position.x); robot_initial_pose = Eigen::Quaterniond(initial_robot_pose.orientation.w,
robotInitialPose.y(_src.position.y); initial_robot_pose.orientation.x,
initial_robot_pose.orientation.y,
initial_robot_pose.orientation.z);
mrpt::math::CQuaternionDouble quat; robot_initial_pose.translation()(0) = initial_robot_pose.position.x;
quat.x(_src.orientation.x); robot_initial_pose.translation()(1) = initial_robot_pose.position.y;
quat.y(_src.orientation.y);
quat.z(_src.orientation.z); ROS_INFO_STREAM_COND(verbose, "[rf2o] Setting origin at:\n"
quat.r(_src.orientation.w); << robot_initial_pose.matrix());
double roll, pitch, yaw;
quat.rpy(roll, pitch, yaw);
robotInitialPose.setYawPitchRoll(yaw,pitch,roll);
//robotInitialPose.phi(yaw);
//Set the initial pose //Set the initial pose
laser_pose = robotInitialPose + laser_pose_on_robot; laser_pose_ = robot_initial_pose * laser_pose_on_robot_;
laser_oldpose = robotInitialPose + laser_pose_on_robot; laser_oldpose_ = laser_oldpose_;
// Init module (internal) // Init module (internal)
//------------------------ //------------------------
range_wf.setSize(1, width); range_wf = Eigen::MatrixXf::Constant(1, width, 1);
//Resize vectors according to levels //Resize vectors according to levels
transformations.resize(ctf_levels); transformations.resize(ctf_levels);
@@ -91,7 +92,7 @@ void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
//Resize pyramid //Resize pyramid
unsigned int s, cols_i; unsigned int s, cols_i;
const unsigned int pyr_levels = round(log2(round(float(width) / float(cols)))) + ctf_levels; const unsigned int pyr_levels = std::round(std::log2(round(float(width) / float(cols)))) + ctf_levels;
range.resize(pyr_levels); range.resize(pyr_levels);
range_old.resize(pyr_levels); range_old.resize(pyr_levels);
range_inter.resize(pyr_levels); range_inter.resize(pyr_levels);
@@ -107,24 +108,21 @@ void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
for (unsigned int i = 0; i < pyr_levels; i++) for (unsigned int i = 0; i < pyr_levels; i++)
{ {
s = pow(2.f, int(i)); s = std::pow(2.f, int(i));
cols_i = ceil(float(width) / float(s)); cols_i = std::ceil(float(width) / float(s));
range[i].resize(1, cols_i); range[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
range_old[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
range_inter[i].resize(1, cols_i); range_inter[i].resize(1, cols_i);
range_old[i].resize(1, cols_i);
range[i].assign(0.0f); xx[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
range_old[i].assign(0.0f); xx_old[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
xx[i].resize(1, cols_i);
yy[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
yy_old[i] = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
xx_inter[i].resize(1, cols_i); xx_inter[i].resize(1, cols_i);
xx_old[i].resize(1, cols_i);
xx[i].assign(0.0f);
xx_old[i].assign(0.0f);
yy[i].resize(1, cols_i);
yy_inter[i].resize(1, cols_i); yy_inter[i].resize(1, cols_i);
yy_old[i].resize(1, cols_i);
yy[i].assign(0.f);
yy_old[i].assign(0.f);
if (cols_i <= cols) if (cols_i <= cols)
{ {
@@ -139,28 +137,31 @@ void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
normx.resize(1, cols); normx.resize(1, cols);
normy.resize(1, cols); normy.resize(1, cols);
norm_ang.resize(1, cols); norm_ang.resize(1, cols);
weights.setSize(1, cols); weights.resize(1, cols);
null.setSize(1, cols);
null.assign(0);
cov_odo.assign(0.f);
null = Eigen::MatrixXi::Constant(1, cols, 0);
cov_odo = IncrementCov::Zero();
fps = 1.f; //In Hz fps = 1.f; //In Hz
num_valid_range = 0; num_valid_range = 0;
//Compute gaussian mask //Compute gaussian mask
g_mask[0] = 1.f / 16.f; g_mask[1] = 0.25f; g_mask[2] = 6.f / 16.f; g_mask[3] = g_mask[1]; g_mask[4] = g_mask[0]; g_mask[0] = 1.f / 16.f;
g_mask[1] = 0.25f;
g_mask[2] = 6.f / 16.f;
g_mask[3] = g_mask[1];
g_mask[4] = g_mask[0];
kai_abs.assign(0.f); kai_abs_ = MatrixS31::Zero();
kai_loc_old.assign(0.f); kai_loc_old_ = MatrixS31::Zero();
module_initialized = true; module_initialized = true;
last_odom_time = ros::Time::now(); last_odom_time = ros::Time::now();
} }
const mrpt::poses::CPose3D& CLaserOdometry2D::getIncrement() const const CLaserOdometry2D::Pose3d& CLaserOdometry2D::getIncrement() const
{ {
return last_increment; return last_increment_;
} }
const Eigen::Matrix<float, 3, 3>& CLaserOdometry2D::getIncrementCovariance() const const Eigen::Matrix<float, 3, 3>& CLaserOdometry2D::getIncrementCovariance() const
@@ -168,27 +169,27 @@ const Eigen::Matrix<float, 3, 3>& CLaserOdometry2D::getIncrementCovariance() con
return cov_odo; return cov_odo;
} }
mrpt::poses::CPose3D& CLaserOdometry2D::getPose() CLaserOdometry2D::Pose3d& CLaserOdometry2D::getPose()
{ {
return robot_pose; return robot_pose_;
} }
const mrpt::poses::CPose3D& CLaserOdometry2D::getPose() const const CLaserOdometry2D::Pose3d& CLaserOdometry2D::getPose() const
{ {
return robot_pose; return robot_pose_;
} }
void CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan) bool CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan)
{ {
//================================================================================== //==================================================================================
// DIFERENTIAL ODOMETRY MULTILEVEL // DIFERENTIAL ODOMETRY MULTILEVEL
//================================================================================== //==================================================================================
//copy laser scan to internal variable //copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++) range_wf = Eigen::Map<const Eigen::MatrixXf>(scan.ranges.data(), width, 1);
range_wf(i) = scan.ranges[i];
ros::WallTime start = ros::WallTime::now();
m_clock.Tic();
createImagePyramid(); createImagePyramid();
//Coarse-to-fine scheme //Coarse-to-fine scheme
@@ -198,9 +199,9 @@ void CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan)
transformations[i].setIdentity(); transformations[i].setIdentity();
level = i; level = i;
unsigned int s = pow(2.f,int(ctf_levels-(i+1))); unsigned int s = std::pow(2.f,int(ctf_levels-(i+1)));
cols_i = ceil(float(cols)/float(s)); cols_i = std::ceil(float(cols)/float(s));
image_level = ctf_levels - i + round(log2(round(float(width)/float(cols)))) - 1; image_level = ctf_levels - i + std::round(std::log2(std::round(float(width)/float(cols)))) - 1;
//1. Perform warping //1. Perform warping
if (i == 0) if (i == 0)
@@ -233,19 +234,31 @@ void CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan)
solveSystemNonLinear(); solveSystemNonLinear();
//solveSystemOneLevel(); //without robust-function //solveSystemOneLevel(); //without robust-function
} }
else
//8. Filter solution {
filterLevelSolution(); /// @todo At initialization something
/// isn't properly initialized so that
/// uninitialized values get propagated
/// from 'filterLevelSolution' first call
/// Throughout the whole execution. Thus
/// this 'continue' that surprisingly works.
continue;
} }
m_runtime = 1000*m_clock.Tac(); //8. Filter solution
if (!filterLevelSolution()) return false;
}
ROS_INFO_COND(verbose, "[rf2o] execution time (ms): %f", m_runtime); m_runtime = ros::WallTime::now() - start;
ROS_INFO_COND(verbose, "[rf2o] execution time (ms): %f",
m_runtime.toSec()*double(1000));
//Update poses //Update poses
PoseUpdate(); PoseUpdate();
}
return true;
}
void CLaserOdometry2D::createImagePyramid() void CLaserOdometry2D::createImagePyramid()
{ {
@@ -259,13 +272,13 @@ void CLaserOdometry2D::createImagePyramid()
//The number of levels of the pyramid does not match the number of levels used //The number of levels of the pyramid does not match the number of levels used
//in the odometry computation (because we sometimes want to finish with lower resolutions) //in the odometry computation (because we sometimes want to finish with lower resolutions)
unsigned int pyr_levels = round(log2(round(float(width)/float(cols)))) + ctf_levels; unsigned int pyr_levels = std::round(std::log2(std::round(float(width)/float(cols)))) + ctf_levels;
//Generate levels //Generate levels
for (unsigned int i = 0; i<pyr_levels; i++) for (unsigned int i = 0; i<pyr_levels; i++)
{ {
unsigned int s = pow(2.f,int(i)); unsigned int s = std::pow(2.f,int(i));
cols_i = ceil(float(width)/float(s)); cols_i = std::ceil(float(width)/float(s));
const unsigned int i_1 = i-1; const unsigned int i_1 = i-1;
@@ -286,7 +299,7 @@ void CLaserOdometry2D::createImagePyramid()
for (int l=-2; l<3; l++) for (int l=-2; l<3; l++)
{ {
const float abs_dif = abs(range_wf(u+l)-dcenter); const float abs_dif = std::abs(range_wf(u+l)-dcenter);
if (abs_dif < max_range_dif) if (abs_dif < max_range_dif)
{ {
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif); const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -298,7 +311,6 @@ void CLaserOdometry2D::createImagePyramid()
} }
else else
range[i](u) = 0.f; range[i](u) = 0.f;
} }
//Boundary //Boundary
@@ -314,7 +326,7 @@ void CLaserOdometry2D::createImagePyramid()
const int indu = u+l; const int indu = u+l;
if ((indu>=0)&&(indu<cols_i)) if ((indu>=0)&&(indu<cols_i))
{ {
const float abs_dif = abs(range_wf(indu)-dcenter); const float abs_dif = std::abs(range_wf(indu)-dcenter);
if (abs_dif < max_range_dif) if (abs_dif < max_range_dif)
{ {
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif); const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -327,7 +339,6 @@ void CLaserOdometry2D::createImagePyramid()
} }
else else
range[i](u) = 0.f; range[i](u) = 0.f;
} }
} }
} }
@@ -351,7 +362,7 @@ void CLaserOdometry2D::createImagePyramid()
for (int l=-2; l<3; l++) for (int l=-2; l<3; l++)
{ {
const float abs_dif = abs(range[i_1](u2+l)-dcenter); const float abs_dif = std::abs(range[i_1](u2+l)-dcenter);
if (abs_dif < max_range_dif) if (abs_dif < max_range_dif)
{ {
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif); const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -381,7 +392,7 @@ void CLaserOdometry2D::createImagePyramid()
const int indu = u2+l; const int indu = u2+l;
if ((indu>=0)&&(indu<cols_i2)) if ((indu>=0)&&(indu<cols_i2))
{ {
const float abs_dif = abs(range[i_1](indu)-dcenter); const float abs_dif = std::abs(range[i_1](indu)-dcenter);
if (abs_dif < max_range_dif) if (abs_dif < max_range_dif)
{ {
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif); const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -405,8 +416,8 @@ void CLaserOdometry2D::createImagePyramid()
if (range[i](u) > 0.f) if (range[i](u) > 0.f)
{ {
const float tita = -0.5*fovh + float(u)*fovh/float(cols_i-1); const float tita = -0.5*fovh + float(u)*fovh/float(cols_i-1);
xx[i](u) = range[i](u)*cos(tita); xx[i](u) = range[i](u)*std::cos(tita);
yy[i](u) = range[i](u)*sin(tita); yy[i](u) = range[i](u)*std::sin(tita);
} }
else else
{ {
@@ -417,8 +428,6 @@ void CLaserOdometry2D::createImagePyramid()
} }
} }
void CLaserOdometry2D::calculateCoord() void CLaserOdometry2D::calculateCoord()
{ {
for (unsigned int u = 0; u < cols_i; u++) for (unsigned int u = 0; u < cols_i; u++)
@@ -438,26 +447,32 @@ void CLaserOdometry2D::calculateCoord()
} }
} }
void CLaserOdometry2D::calculaterangeDerivativesSurface() void CLaserOdometry2D::calculaterangeDerivativesSurface()
{ {
//The gradient size ir reserved at the maximum size (at the constructor) //The gradient size ir reserved at the maximum size (at the constructor)
//Compute connectivity //Compute connectivity
rtita.resize(1,cols_i); //Defined in a different way now, without inversion
rtita.assign(1.f); //Defined in a different way now, without inversion
rtita = Eigen::MatrixXf::Constant(1, cols_i, 1.f);
for (unsigned int u = 0; u < cols_i-1; u++) for (unsigned int u = 0; u < cols_i-1; u++)
{ {
const float dist = mrpt::math::square(xx_inter[image_level](u+1) - xx_inter[image_level](u)) float dista = xx_inter[image_level](u+1) - xx_inter[image_level](u);
+ mrpt::math::square(yy_inter[image_level](u+1) - yy_inter[image_level](u)); dista *= dista;
float distb = yy_inter[image_level](u+1) - yy_inter[image_level](u);
distb *= distb;
const float dist = dista + distb;
if (dist > 0.f) if (dist > 0.f)
rtita(u) = sqrt(dist); rtita(u) = std::sqrt(dist);
} }
//Spatial derivatives //Spatial derivatives
for (unsigned int u = 1; u < cols_i-1; u++) for (unsigned int u = 1; u < cols_i-1; u++)
dtita(u) = (rtita(u-1)*(range_inter[image_level](u+1)-range_inter[image_level](u)) + rtita(u)*(range_inter[image_level](u) - range_inter[image_level](u-1)))/(rtita(u)+rtita(u-1)); dtita(u) = (rtita(u-1)*(range_inter[image_level](u+1)-
range_inter[image_level](u)) + rtita(u)*(range_inter[image_level](u) -
range_inter[image_level](u-1)))/(rtita(u)+rtita(u-1));
dtita(0) = dtita(1); dtita(0) = dtita(1);
dtita(cols_i-1) = dtita(cols_i-2); dtita(cols_i-1) = dtita(cols_i-2);
@@ -490,12 +505,11 @@ void CLaserOdometry2D::calculaterangeDerivativesSurface()
//dtmed.swap(dt); //dtmed.swap(dt);
} }
void CLaserOdometry2D::computeNormals() void CLaserOdometry2D::computeNormals()
{ {
normx.assign(0.f); normx.setConstant(1, cols, 0.f);
normy.assign(0.f); normy.setConstant(1, cols, 0.f);
norm_ang.assign(0.f); norm_ang.setConstant(1, cols, 0.f);
const float incr_tita = fovh/float(cols_i-1); const float incr_tita = fovh/float(cols_i-1);
for (unsigned int u=0; u<cols_i; u++) for (unsigned int u=0; u<cols_i; u++)
@@ -503,7 +517,7 @@ void CLaserOdometry2D::computeNormals()
if (null(u) == 0.f) if (null(u) == 0.f)
{ {
const float tita = -0.5f*fovh + float(u)*incr_tita; const float tita = -0.5f*fovh + float(u)*incr_tita;
const float alfa = -atan2(2.f*dtita(u), 2.f*range[image_level](u)*incr_tita); const float alfa = -std::atan2(2.f*dtita(u), 2.f*range[image_level](u)*incr_tita);
norm_ang(u) = tita + alfa; norm_ang(u) = tita + alfa;
if (norm_ang(u) < -M_PI) if (norm_ang(u) < -M_PI)
norm_ang(u) += 2.f*M_PI; norm_ang(u) += 2.f*M_PI;
@@ -512,21 +526,20 @@ void CLaserOdometry2D::computeNormals()
else if (norm_ang(u) > M_PI) else if (norm_ang(u) > M_PI)
norm_ang(u) -= M_PI; norm_ang(u) -= M_PI;
normx(u) = cos(tita + alfa); normx(u) = std::cos(tita + alfa);
normy(u) = sin(tita + alfa); normy(u) = std::sin(tita + alfa);
} }
} }
} }
void CLaserOdometry2D::computeWeights() void CLaserOdometry2D::computeWeights()
{ {
//The maximum weight size is reserved at the constructor //The maximum weight size is reserved at the constructor
weights.assign(0.f); weights.setConstant(1, cols, 0.f);
//Parameters for error_linearization //Parameters for error_linearization
const float kdtita = 1.f; const float kdtita = 1.f;
const float kdt = kdtita/mrpt::math::square(fps); const float kdt = kdtita / (fps*fps);
const float k2d = 0.2f; const float k2d = 0.2f;
for (unsigned int u = 1; u < cols_i-1; u++) for (unsigned int u = 1; u < cols_i-1; u++)
@@ -540,16 +553,17 @@ void CLaserOdometry2D::computeWeights()
const float dtitat = ini_dtita - final_dtita; const float dtitat = ini_dtita - final_dtita;
const float dtita2 = dtita(u+1) - dtita(u-1); const float dtita2 = dtita(u+1) - dtita(u-1);
const float w_der = kdt*mrpt::math::square(dt(u)) + kdtita*mrpt::math::square(dtita(u)) + k2d*(abs(dtitat) + abs(dtita2)); const float w_der = kdt*(dt(u)*dt(u)) +
kdtita*(dtita(u)*dtita(u)) +
k2d*(std::abs(dtitat) + std::abs(dtita2));
weights(u) = sqrt(1.f/w_der); weights(u) = std::sqrt(1.f/w_der);
} }
const float inv_max = 1.f/weights.maximum(); const float inv_max = 1.f / weights.maxCoeff();
weights = inv_max*weights; weights = inv_max*weights;
} }
void CLaserOdometry2D::findNullPoints() void CLaserOdometry2D::findNullPoints()
{ {
//Size of null matrix is set to its maximum size (constructor) //Size of null matrix is set to its maximum size (constructor)
@@ -567,12 +581,12 @@ void CLaserOdometry2D::findNullPoints()
} }
} }
// Solves the system without considering any robust-function // Solves the system without considering any robust-function
void CLaserOdometry2D::solveSystemOneLevel() void CLaserOdometry2D::solveSystemOneLevel()
{ {
A.resize(num_valid_range,3); A.resize(num_valid_range, 3);
B.setSize(num_valid_range,1); B.resize(num_valid_range, 1);
unsigned int cont = 0; unsigned int cont = 0;
const float kdtita = (cols_i-1)/fovh; const float kdtita = (cols_i-1)/fovh;
@@ -587,18 +601,18 @@ void CLaserOdometry2D::solveSystemOneLevel()
const float tita = -0.5*fovh + u/kdtita; const float tita = -0.5*fovh + u/kdtita;
//Fill the matrix A //Fill the matrix A
A(cont, 0) = tw*(cos(tita) + dtita(u)*kdtita*sin(tita)/range_inter[image_level](u)); A(cont, 0) = tw*(std::cos(tita) + dtita(u)*kdtita*std::sin(tita)/range_inter[image_level](u));
A(cont, 1) = tw*(sin(tita) - dtita(u)*kdtita*cos(tita)/range_inter[image_level](u)); A(cont, 1) = tw*(std::sin(tita) - dtita(u)*kdtita*std::cos(tita)/range_inter[image_level](u));
A(cont, 2) = tw*(-yy[image_level](u)*cos(tita) + xx[image_level](u)*sin(tita) - dtita(u)*kdtita); A(cont, 2) = tw*(-yy[image_level](u)*std::cos(tita) + xx[image_level](u)*std::sin(tita) - dtita(u)*kdtita);
B(cont,0) = tw*(-dt(u)); B(cont, 0) = tw*(-dt(u));
cont++; cont++;
} }
//Solve the linear system of equations using a minimum least squares method //Solve the linear system of equations using a minimum least squares method
Eigen::MatrixXf AtA, AtB; Eigen::MatrixXf AtA, AtB;
AtA.multiply_AtA(A); AtA = A.transpose()*A;
AtB.multiply_AtB(A,B); AtB = A.transpose()*B;
Var = AtA.ldlt().solve(AtB); Var = AtA.ldlt().solve(AtB);
//Covariance matrix calculation Cov Order -> vx,vy,wz //Covariance matrix calculation Cov Order -> vx,vy,wz
@@ -606,15 +620,14 @@ void CLaserOdometry2D::solveSystemOneLevel()
res = A*Var - B; res = A*Var - B;
cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm(); cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm();
kai_loc_level = Var; kai_loc_level_ = Var;
} }
// Solves the system by considering the Cauchy M-estimator robust-function // Solves the system by considering the Cauchy M-estimator robust-function
void CLaserOdometry2D::solveSystemNonLinear() void CLaserOdometry2D::solveSystemNonLinear()
{ {
A.resize(num_valid_range,3); Aw.resize(num_valid_range,3); A.resize(num_valid_range, 3); Aw.resize(num_valid_range, 3);
B.setSize(num_valid_range,1); Bw.setSize(num_valid_range,1); B.resize(num_valid_range, 1); Bw.resize(num_valid_range, 1);
unsigned int cont = 0; unsigned int cont = 0;
const float kdtita = float(cols_i-1)/fovh; const float kdtita = float(cols_i-1)/fovh;
@@ -629,18 +642,18 @@ void CLaserOdometry2D::solveSystemNonLinear()
const float tita = -0.5*fovh + u/kdtita; const float tita = -0.5*fovh + u/kdtita;
//Fill the matrix A //Fill the matrix A
A(cont, 0) = tw*(cos(tita) + dtita(u)*kdtita*sin(tita)/range_inter[image_level](u)); A(cont, 0) = tw*(std::cos(tita) + dtita(u)*kdtita*std::sin(tita)/range_inter[image_level](u));
A(cont, 1) = tw*(sin(tita) - dtita(u)*kdtita*cos(tita)/range_inter[image_level](u)); A(cont, 1) = tw*(std::sin(tita) - dtita(u)*kdtita*std::cos(tita)/range_inter[image_level](u));
A(cont, 2) = tw*(-yy[image_level](u)*cos(tita) + xx[image_level](u)*sin(tita) - dtita(u)*kdtita); A(cont, 2) = tw*(-yy[image_level](u)*std::cos(tita) + xx[image_level](u)*std::sin(tita) - dtita(u)*kdtita);
B(cont,0) = tw*(-dt(u)); B(cont, 0) = tw*(-dt(u));
cont++; cont++;
} }
//Solve the linear system of equations using a minimum least squares method //Solve the linear system of equations using a minimum least squares method
Eigen::MatrixXf AtA, AtB; Eigen::MatrixXf AtA, AtB;
AtA.multiply_AtA(A); AtA = A.transpose()*A;
AtB.multiply_AtB(A,B); AtB = A.transpose()*B;
Var = AtA.ldlt().solve(AtB); Var = AtA.ldlt().solve(AtB);
//Covariance matrix calculation Cov Order -> vx,vy,wz //Covariance matrix calculation Cov Order -> vx,vy,wz
@@ -655,11 +668,11 @@ void CLaserOdometry2D::solveSystemNonLinear()
for (unsigned int u = 1; u < cols_i-1; u++) for (unsigned int u = 1; u < cols_i-1; u++)
if (null(u) == 0) if (null(u) == 0)
{ {
aver_dt += fabsf(dt(u)); aver_dt += std::abs(dt(u));
aver_res += fabsf(res(ind++)); aver_res += std::abs(res(ind++));
} }
aver_dt /= cont; aver_res /= cont; aver_dt /= cont; aver_res /= cont;
// printf("\n Aver dt = %f, aver res = %f", aver_dt, aver_res); // printf("\n Aver dt = %f, aver res = %f", aver_dt, aver_res);
const float k = 10.f/aver_dt; //200 const float k = 10.f/aver_dt; //200
@@ -677,7 +690,7 @@ void CLaserOdometry2D::solveSystemNonLinear()
for (unsigned int u = 1; u < cols_i-1; u++) for (unsigned int u = 1; u < cols_i-1; u++)
if (null(u) == 0) if (null(u) == 0)
{ {
const float res_weight = sqrt(1.f/(1.f + mrpt::math::square(k*res(cont)))); const float res_weight = std::sqrt(1.f/(1.f + ((k*res(cont))*(k*res(cont)))));
//Fill the matrix Aw //Fill the matrix Aw
Aw(cont,0) = res_weight*A(cont,0); Aw(cont,0) = res_weight*A(cont,0);
@@ -688,8 +701,8 @@ void CLaserOdometry2D::solveSystemNonLinear()
} }
//Solve the linear system of equations using a minimum least squares method //Solve the linear system of equations using a minimum least squares method
AtA.multiply_AtA(Aw); AtA = Aw.transpose()*Aw;
AtB.multiply_AtB(Aw,Bw); AtB = Aw.transpose()*Bw;
Var = AtA.ldlt().solve(AtB); Var = AtA.ldlt().solve(AtB);
res = A*Var - B; res = A*Var - B;
@@ -701,24 +714,21 @@ void CLaserOdometry2D::solveSystemNonLinear()
} }
cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm(); cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm();
kai_loc_level = Var; kai_loc_level_ = Var;
ROS_INFO_STREAM_COND(verbose, "[rf2o] COV_ODO: " << cov_odo); ROS_INFO_STREAM_COND(verbose && false, "[rf2o] COV_ODO:\n" << cov_odo);
} }
void CLaserOdometry2D::Reset(mrpt::poses::CPose3D ini_pose, CObservation2DRangeScan scan) void CLaserOdometry2D::Reset(const Pose3d& ini_pose/*, CObservation2DRangeScan scan*/)
{ {
//Set the initial pose //Set the initial pose
laser_pose = ini_pose; laser_pose_ = ini_pose;
laser_oldpose = ini_pose; laser_oldpose_ = ini_pose;
//readLaser(scan); //readLaser(scan);
createImagePyramid(); createImagePyramid();
//readLaser(scan);
createImagePyramid();
} }
void CLaserOdometry2D::performWarping() void CLaserOdometry2D::performWarping()
{ {
Eigen::Matrix3f acu_trans; Eigen::Matrix3f acu_trans;
@@ -727,9 +737,9 @@ void CLaserOdometry2D::performWarping()
for (unsigned int i=1; i<=level; i++) for (unsigned int i=1; i<=level; i++)
acu_trans = transformations[i-1]*acu_trans; acu_trans = transformations[i-1]*acu_trans;
Eigen::MatrixXf wacu(1,cols_i); Eigen::MatrixXf wacu = Eigen::MatrixXf::Constant(1, cols_i, 0.f);
wacu.assign(0.f);
range_warped[image_level].assign(0.f); range_warped[image_level].setConstant(1, cols_i, 0.f);
const float cols_lim = float(cols_i-1); const float cols_lim = float(cols_i-1);
const float kdtita = cols_lim/fovh; const float kdtita = cols_lim/fovh;
@@ -741,8 +751,8 @@ void CLaserOdometry2D::performWarping()
//Transform point to the warped reference frame //Transform point to the warped reference frame
const float x_w = acu_trans(0,0)*xx[image_level](j) + acu_trans(0,1)*yy[image_level](j) + acu_trans(0,2); const float x_w = acu_trans(0,0)*xx[image_level](j) + acu_trans(0,1)*yy[image_level](j) + acu_trans(0,2);
const float y_w = acu_trans(1,0)*xx[image_level](j) + acu_trans(1,1)*yy[image_level](j) + acu_trans(1,2); const float y_w = acu_trans(1,0)*xx[image_level](j) + acu_trans(1,1)*yy[image_level](j) + acu_trans(1,2);
const float tita_w = atan2(y_w, x_w); const float tita_w = std::atan2(y_w, x_w);
const float range_w = sqrt(x_w*x_w + y_w*y_w); const float range_w = std::sqrt(x_w*x_w + y_w*y_w);
//Calculate warping //Calculate warping
const float uwarp = kdtita*(tita_w + 0.5*fovh); const float uwarp = kdtita*(tita_w + 0.5*fovh);
@@ -756,18 +766,18 @@ void CLaserOdometry2D::performWarping()
const float delta_l = uwarp - float(uwarp_l); const float delta_l = uwarp - float(uwarp_l);
//Very close pixel //Very close pixel
if (abs(round(uwarp) - uwarp) < 0.05f) if (std::abs(std::round(uwarp) - uwarp) < 0.05f)
{ {
range_warped[image_level](round(uwarp)) += range_w; range_warped[image_level](round(uwarp)) += range_w;
wacu(round(uwarp)) += 1.f; wacu(std::round(uwarp)) += 1.f;
} }
else else
{ {
const float w_r = mrpt::math::square(delta_l); const float w_r = delta_l*delta_l;
range_warped[image_level](uwarp_r) += w_r*range_w; range_warped[image_level](uwarp_r) += w_r*range_w;
wacu(uwarp_r) += w_r; wacu(uwarp_r) += w_r;
const float w_l = mrpt::math::square(delta_r); const float w_l = delta_r*delta_r;
range_warped[image_level](uwarp_l) += w_l*range_w; range_warped[image_level](uwarp_l) += w_l*range_w;
wacu(uwarp_l) += w_l; wacu(uwarp_l) += w_l;
} }
@@ -782,8 +792,8 @@ void CLaserOdometry2D::performWarping()
{ {
const float tita = -0.5f*fovh + float(u)/kdtita; const float tita = -0.5f*fovh + float(u)/kdtita;
range_warped[image_level](u) /= wacu(u); range_warped[image_level](u) /= wacu(u);
xx_warped[image_level](u) = range_warped[image_level](u)*cos(tita); xx_warped[image_level](u) = range_warped[image_level](u)*std::cos(tita);
yy_warped[image_level](u) = range_warped[image_level](u)*sin(tita); yy_warped[image_level](u) = range_warped[image_level](u)*std::sin(tita);
} }
else else
{ {
@@ -794,19 +804,15 @@ void CLaserOdometry2D::performWarping()
} }
} }
bool CLaserOdometry2D::filterLevelSolution()
void CLaserOdometry2D::filterLevelSolution()
{ {
// Calculate Eigenvalues and Eigenvectors // Calculate Eigenvalues and Eigenvectors
//---------------------------------------------------------- //----------------------------------------------------------
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXf> eigensolver(cov_odo); Eigen::SelfAdjointEigenSolver<Eigen::MatrixXf> eigensolver(cov_odo);
if (eigensolver.info() != Eigen::Success) if (eigensolver.info() != Eigen::Success)
{ {
ROS_INFO_COND(verbose, "[rf2o] ERROR: Eigensolver couldn't find a solution. Pose is not updated"); ROS_WARN_COND(verbose, "[rf2o] ERROR: Eigensolver couldn't find a solution. Pose is not updated");
return; return false;
} }
//First, we have to describe both the new linear and angular speeds in the "eigenvector" basis //First, we have to describe both the new linear and angular speeds in the "eigenvector" basis
@@ -815,11 +821,13 @@ void CLaserOdometry2D::filterLevelSolution()
Eigen::Matrix<float,3,1> kai_b; Eigen::Matrix<float,3,1> kai_b;
Bii = eigensolver.eigenvectors(); Bii = eigensolver.eigenvectors();
kai_b = Bii.colPivHouseholderQr().solve(kai_loc_level); kai_b = Bii.colPivHouseholderQr().solve(kai_loc_level_);
assert((kai_loc_level_).isApprox(Bii*kai_b, 1e-5) && "Ax=b has no solution." && __LINE__);
//Second, we have to describe both the old linear and angular speeds in the "eigenvector" basis too //Second, we have to describe both the old linear and angular speeds in the "eigenvector" basis too
//------------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------------------
mrpt::math::CMatrixFloat31 kai_loc_sub; MatrixS31 kai_loc_sub;
//Important: we have to substract the solutions from previous levels //Important: we have to substract the solutions from previous levels
Eigen::Matrix3f acu_trans; Eigen::Matrix3f acu_trans;
@@ -833,100 +841,111 @@ void CLaserOdometry2D::filterLevelSolution()
kai_loc_sub(2) = 0.f; kai_loc_sub(2) = 0.f;
else else
{ {
#if MRPT_VERSION>=0x130 kai_loc_sub(2) = -fps*std::acos(acu_trans(0,0))*rf2o::sign(acu_trans(1,0));
kai_loc_sub(2) = -fps*acos(acu_trans(0,0))*mrpt::utils::sign(acu_trans(1,0));
#else
kai_loc_sub(2) = -fps*acos(acu_trans(0,0))*mrpt::math::sign(acu_trans(1,0));
#endif
} }
kai_loc_sub += kai_loc_old; kai_loc_sub += kai_loc_old_;
Eigen::Matrix<float,3,1> kai_b_old; Eigen::Matrix<float,3,1> kai_b_old;
kai_b_old = Bii.colPivHouseholderQr().solve(kai_loc_sub); kai_b_old = Bii.colPivHouseholderQr().solve(kai_loc_sub);
assert((kai_loc_sub).isApprox(Bii*kai_b_old, 1e-5) && "Ax=b has no solution." && __LINE__);
//Filter speed //Filter speed
const float cf = 15e3f*expf(-int(level)), df = 0.05f*expf(-int(level)); const float cf = 15e3f*std::exp(-float(int(level))),
df = 0.05f*std::exp(-float(int(level)));
Eigen::Matrix<float,3,1> kai_b_fil; Eigen::Matrix<float,3,1> kai_b_fil;
for (unsigned int i=0; i<3; i++) for (unsigned int i=0; i<3; i++)
{ {
kai_b_fil(i,0) = (kai_b(i,0) + (cf*eigensolver.eigenvalues()(i,0) + df)*kai_b_old(i,0))/(1.f + cf*eigensolver.eigenvalues()(i,0) + df); kai_b_fil(i) = (kai_b(i) + (cf*eigensolver.eigenvalues()(i,0) + df)*kai_b_old(i))/(1.f + cf*eigensolver.eigenvalues()(i,0) + df);
//kai_b_fil_f(i,0) = (1.f*kai_b(i,0) + 0.f*kai_b_old_f(i,0))/(1.0f + 0.f); //kai_b_fil_f(i,0) = (1.f*kai_b(i,0) + 0.f*kai_b_old_f(i,0))/(1.0f + 0.f);
} }
//Transform filtered speed to local reference frame and compute transformation //Transform filtered speed to local reference frame and compute transformation
Eigen::Matrix<float,3,1> kai_loc_fil = Bii.inverse().colPivHouseholderQr().solve(kai_b_fil); Eigen::Matrix<float, 3, 1> kai_loc_fil = Bii.inverse().colPivHouseholderQr().solve(kai_b_fil);
assert((kai_b_fil).isApprox(Bii.inverse()*kai_loc_fil, 1e-5) && "Ax=b has no solution." && __LINE__);
//transformation //transformation
const float incrx = kai_loc_fil(0)/fps; const float incrx = kai_loc_fil(0)/fps;
const float incry = kai_loc_fil(1)/fps; const float incry = kai_loc_fil(1)/fps;
const float rot = kai_loc_fil(2)/fps; const float rot = kai_loc_fil(2)/fps;
transformations[level](0,0) = cos(rot);
transformations[level](0,1) = -sin(rot); transformations[level](0,0) = std::cos(rot);
transformations[level](1,0) = sin(rot); transformations[level](0,1) = -std::sin(rot);
transformations[level](1,1) = cos(rot); transformations[level](1,0) = std::sin(rot);
transformations[level](1,1) = std::cos(rot);
transformations[level](0,2) = incrx; transformations[level](0,2) = incrx;
transformations[level](1,2) = incry; transformations[level](1,2) = incry;
}
return true;
}
void CLaserOdometry2D::PoseUpdate() void CLaserOdometry2D::PoseUpdate()
{ {
//First, compute the overall transformation // First, compute the overall transformation
//--------------------------------------------------- //---------------------------------------------------
Eigen::Matrix3f acu_trans; Eigen::Matrix3f acu_trans;
acu_trans.setIdentity(); acu_trans.setIdentity();
for (unsigned int i=1; i<=ctf_levels; i++) for (unsigned int i=1; i<=ctf_levels; i++)
acu_trans = transformations[i-1]*acu_trans; acu_trans = transformations[i-1]*acu_trans;
// Compute kai_loc and kai_abs // Compute kai_loc and kai_abs
//-------------------------------------------------------- //--------------------------------------------------------
kai_loc(0) = fps*acu_trans(0,2); kai_loc_(0) = fps*acu_trans(0,2);
kai_loc(1) = fps*acu_trans(1,2); kai_loc_(1) = fps*acu_trans(1,2);
if (acu_trans(0,0) > 1.f) if (acu_trans(0,0) > 1.f)
kai_loc(2) = 0.f; kai_loc_(2) = 0.f;
else else
{ {
#if MRPT_VERSION>=0x130 kai_loc_(2) = fps*std::acos(acu_trans(0,0))*rf2o::sign(acu_trans(1,0));
kai_loc(2) = fps*acos(acu_trans(0,0))*mrpt::utils::sign(acu_trans(1,0));
#else
kai_loc(2) = fps*acos(acu_trans(0,0))*mrpt::math::sign(acu_trans(1,0));
#endif
} }
//cout << endl << "Arc cos (incr tita): " << kai_loc(2);
float phi = laser_pose.yaw(); //cout << endl << "Arc cos (incr tita): " << kai_loc_(2);
kai_abs(0) = kai_loc(0)*cos(phi) - kai_loc(1)*sin(phi); float phi = rf2o::getYaw(laser_pose_.rotation());
kai_abs(1) = kai_loc(0)*sin(phi) + kai_loc(1)*cos(phi);
kai_abs(2) = kai_loc(2); kai_abs_(0) = kai_loc_(0)*std::cos(phi) - kai_loc_(1)*std::sin(phi);
kai_abs_(1) = kai_loc_(0)*std::sin(phi) + kai_loc_(1)*std::cos(phi);
kai_abs_(2) = kai_loc_(2);
// Update poses // Update poses
//------------------------------------------------------- //-------------------------------------------------------
laser_oldpose = laser_pose; laser_oldpose_ = laser_pose_;
mrpt::math::CMatrixDouble33 aux_acu = acu_trans; // Eigen::Matrix3f aux_acu = acu_trans;
mrpt::poses::CPose2D pose_aux_2D(acu_trans(0,2), acu_trans(1,2), kai_loc(2)/fps); Pose3d pose_aux_2D = Pose3d::Identity();
laser_pose = laser_pose + mrpt::poses::CPose3D(pose_aux_2D);
last_increment = pose_aux_2D; pose_aux_2D = rf2o::matrixYaw(double(kai_loc_(2)/fps));
pose_aux_2D.translation()(0) = acu_trans(0,2);
pose_aux_2D.translation()(1) = acu_trans(1,2);
laser_pose_ = laser_pose_ * pose_aux_2D;
last_increment_ = pose_aux_2D;
// Compute kai_loc_old // Compute kai_loc_old
//------------------------------------------------------- //-------------------------------------------------------
phi = laser_pose.yaw(); phi = rf2o::getYaw(laser_pose_.rotation());
kai_loc_old(0) = kai_abs(0)*cos(phi) + kai_abs(1)*sin(phi); kai_loc_old_(0) = kai_abs_(0)*std::cos(phi) + kai_abs_(1)*std::sin(phi);
kai_loc_old(1) = -kai_abs(0)*sin(phi) + kai_abs(1)*cos(phi); kai_loc_old_(1) = -kai_abs_(0)*std::sin(phi) + kai_abs_(1)*std::cos(phi);
kai_loc_old(2) = kai_abs(2); kai_loc_old_(2) = kai_abs_(2);
ROS_INFO_COND(verbose, "[rf2o] LASERodom = [%f %f %f]",laser_pose.x(),laser_pose.y(),laser_pose.yaw()); ROS_INFO_COND(verbose, "[rf2o] LASERodom = [%f %f %f]",
laser_pose_.translation()(0),
laser_pose_.translation()(1),
rf2o::getYaw(laser_pose_.rotation()));
//Compose Transformations //Compose Transformations
robot_pose = laser_pose + laser_pose_on_robot_inv; robot_pose_ = laser_pose_ * laser_pose_on_robot_inv_;
ROS_INFO_COND(verbose, "BASEodom = [%f %f %f]",robot_pose.x(),robot_pose.y(),robot_pose.yaw());
ROS_INFO_COND(verbose, "BASEodom = [%f %f %f]",
robot_pose_.translation()(0),
robot_pose_.translation()(1),
rf2o::getYaw(robot_pose_.rotation()));
// Estimate linear/angular speeds (mandatory for base_local_planner) // Estimate linear/angular speeds (mandatory for base_local_planner)
// last_scan -> the last scan received // last_scan -> the last scan received
@@ -936,13 +955,17 @@ void CLaserOdometry2D::PoseUpdate()
last_odom_time = current_scan_time; last_odom_time = current_scan_time;
lin_speed = acu_trans(0,2) / time_inc_sec; lin_speed = acu_trans(0,2) / time_inc_sec;
//double lin_speed = sqrt( mrpt::math::square(robot_oldpose.x()-robot_pose.x()) + mrpt::math::square(robot_oldpose.y()-robot_pose.y()) )/time_inc_sec; //double lin_speed = sqrt( mrpt::math::square(robot_oldpose.x()-robot_pose.x()) + mrpt::math::square(robot_oldpose.y()-robot_pose.y()) )/time_inc_sec;
double ang_inc = robot_pose.yaw() - robot_oldpose.yaw();
double ang_inc = rf2o::getYaw(robot_pose_.rotation()) -
rf2o::getYaw(robot_oldpose_.rotation());
if (ang_inc > 3.14159) if (ang_inc > 3.14159)
ang_inc -= 2*3.14159; ang_inc -= 2*3.14159;
if (ang_inc < -3.14159) if (ang_inc < -3.14159)
ang_inc += 2*3.14159; ang_inc += 2*3.14159;
ang_speed = ang_inc/time_inc_sec; ang_speed = ang_inc/time_inc_sec;
robot_oldpose = robot_pose; robot_oldpose_ = robot_pose_;
//filter speeds //filter speeds
/* /*
@@ -959,3 +982,5 @@ void CLaserOdometry2D::PoseUpdate()
ang_speed = sum2 / last_m_ang_speeds.size(); ang_speed = sum2 / last_m_ang_speeds.size();
*/ */
} }
} /* namespace rf2o */

View File

@@ -11,6 +11,8 @@
* *
* Maintainer: Javier G. Monroy * Maintainer: Javier G. Monroy
* MAPIR group: http://mapir.isa.uma.es/ * MAPIR group: http://mapir.isa.uma.es/
*
* Modifications: Jeremie Deray
******************************************************************************************** */ ******************************************************************************************** */
#include "rf2o_laser_odometry/CLaserOdometry2D.h" #include "rf2o_laser_odometry/CLaserOdometry2D.h"
@@ -18,12 +20,14 @@
#include <tf/transform_broadcaster.h> #include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h> #include <tf/transform_listener.h>
namespace rf2o {
class CLaserOdometry2DNode : CLaserOdometry2D class CLaserOdometry2DNode : CLaserOdometry2D
{ {
public: public:
CLaserOdometry2DNode(); CLaserOdometry2DNode();
~CLaserOdometry2DNode(); ~CLaserOdometry2DNode() = default;
void process(const ros::TimerEvent &); void process(const ros::TimerEvent &);
void publish(); void publish();
@@ -32,7 +36,7 @@ public:
public: public:
bool publish_tf,new_scan_available; bool publish_tf, new_scan_available;
double freq; double freq;
@@ -109,11 +113,6 @@ CLaserOdometry2DNode::CLaserOdometry2DNode() :
ROS_INFO_STREAM("Listening laser scan from topic: " << laser_sub.getTopic()); ROS_INFO_STREAM("Listening laser scan from topic: " << laser_sub.getTopic());
} }
CLaserOdometry2DNode::~CLaserOdometry2DNode()
{
//
}
bool CLaserOdometry2DNode::setLaserPoseFromTf() bool CLaserOdometry2DNode::setLaserPoseFromTf()
{ {
bool retrieved = false; bool retrieved = false;
@@ -134,18 +133,21 @@ bool CLaserOdometry2DNode::setLaserPoseFromTf()
retrieved = false; retrieved = false;
} }
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge) //TF:transform -> Eigen::Isometry3d
mrpt::poses::CPose3D laser_tf;
const tf::Vector3 &t = transform.getOrigin();
laser_tf.x() = t[0];
laser_tf.y() = t[1];
laser_tf.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis(); const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R; Eigen::Matrix3d R;
for(int r = 0; r < 3; r++) for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++) for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c]; R(r,c) = basis[r][c];
laser_tf.setRotationMatrix(R);
Pose3d laser_tf(R);
const tf::Vector3 &t = transform.getOrigin();
laser_tf.translation()(0) = t[0];
laser_tf.translation()(1) = t[1];
laser_tf.translation()(2) = t[2];
setLaserPose(laser_tf); setLaserPose(laser_tf);
@@ -194,7 +196,7 @@ void CLaserOdometry2DNode::LaserCallBack(const sensor_msgs::LaserScan::ConstPtr&
} }
else else
{ {
Init(last_scan, initial_robot_pose.pose.pose); init(last_scan, initial_robot_pose.pose.pose);
first_laser_scan = false; first_laser_scan = false;
} }
} }
@@ -221,10 +223,10 @@ void CLaserOdometry2DNode::publish()
odom_trans.header.stamp = ros::Time::now(); odom_trans.header.stamp = ros::Time::now();
odom_trans.header.frame_id = odom_frame_id; odom_trans.header.frame_id = odom_frame_id;
odom_trans.child_frame_id = base_frame_id; odom_trans.child_frame_id = base_frame_id;
odom_trans.transform.translation.x = robot_pose.x(); odom_trans.transform.translation.x = robot_pose_.translation()(0);
odom_trans.transform.translation.y = robot_pose.y(); odom_trans.transform.translation.y = robot_pose_.translation()(1);
odom_trans.transform.translation.z = 0.0; odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(robot_pose.yaw()); odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(rf2o::getYaw(robot_pose_.rotation()));
//send the transform //send the transform
odom_broadcaster.sendTransform(odom_trans); odom_broadcaster.sendTransform(odom_trans);
} }
@@ -236,10 +238,10 @@ void CLaserOdometry2DNode::publish()
odom.header.stamp = ros::Time::now(); odom.header.stamp = ros::Time::now();
odom.header.frame_id = odom_frame_id; odom.header.frame_id = odom_frame_id;
//set the position //set the position
odom.pose.pose.position.x = robot_pose.x(); odom.pose.pose.position.x = robot_pose_.translation()(0);
odom.pose.pose.position.y = robot_pose.y(); odom.pose.pose.position.y = robot_pose_.translation()(1);
odom.pose.pose.position.z = 0.0; odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(robot_pose.yaw()); odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(rf2o::getYaw(robot_pose_.rotation()));
//set the velocity //set the velocity
odom.child_frame_id = base_frame_id; odom.child_frame_id = base_frame_id;
odom.twist.twist.linear.x = lin_speed; //linear speed odom.twist.twist.linear.x = lin_speed; //linear speed
@@ -249,6 +251,8 @@ void CLaserOdometry2DNode::publish()
odom_pub.publish(odom); odom_pub.publish(odom);
} }
} /* namespace rf2o */
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
// MAIN // MAIN
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
@@ -256,7 +260,7 @@ int main(int argc, char** argv)
{ {
ros::init(argc, argv, "RF2O_LaserOdom"); ros::init(argc, argv, "RF2O_LaserOdom");
CLaserOdometry2DNode myLaserOdomNode; rf2o::CLaserOdometry2DNode myLaserOdomNode;
ros::TimerOptions timer_opt; ros::TimerOptions timer_opt;
timer_opt.oneshot = false; timer_opt.oneshot = false;
@@ -264,7 +268,7 @@ int main(int argc, char** argv)
timer_opt.callback_queue = ros::getGlobalCallbackQueue(); timer_opt.callback_queue = ros::getGlobalCallbackQueue();
timer_opt.tracked_object = ros::VoidConstPtr(); timer_opt.tracked_object = ros::VoidConstPtr();
timer_opt.callback = boost::bind(&CLaserOdometry2DNode::process, &myLaserOdomNode, _1); timer_opt.callback = boost::bind(&rf2o::CLaserOdometry2DNode::process, &myLaserOdomNode, _1);
timer_opt.period = ros::Rate(myLaserOdomNode.freq).expectedCycleTime(); timer_opt.period = ros::Rate(myLaserOdomNode.freq).expectedCycleTime();
ros::Timer rf2o_timer = ros::NodeHandle("~").createTimer(timer_opt); ros::Timer rf2o_timer = ros::NodeHandle("~").createTimer(timer_opt);