Merge pull request #6 from artivis/separating_node_computation

Separating node from computation
This commit is contained in:
Javier G. Monroy
2018-11-21 13:13:32 +01:00
committed by GitHub
4 changed files with 461 additions and 369 deletions

View File

@@ -21,26 +21,18 @@ find_package(catkin REQUIRED COMPONENTS
tf
)
set(MRPT_DONT_USE_DBG_LIBS 1)
## System dependencies are found with CMake's conventions
find_package(Boost REQUIRED COMPONENTS system)
find_package(cmake_modules REQUIRED)
find_package(Eigen3 REQUIRED)
find_package(MRPT REQUIRED)
MESSAGE(STATUS "Found MRPT: " ${MRPT_VERSION})
IF(MRPT_VERSION VERSION_LESS 1.9.9)
# MRPT<2.0
find_package(MRPT REQUIRED base obs maps slam)
ELSE()
# MRPT>=2.0
find_package(MRPT REQUIRED obs maps slam poses core)
ENDIF()
find_package(MRPT REQUIRED base obs) # maps slam
#include_directories(${MRPT_INCLUDE_DIRS})
#MESSAGE( STATUS "MRPT_INCLUDE_DIRS: " ${MRPT_INCLUDE_DIRS})
MESSAGE( STATUS "MRPT_INCLUDE_DIRS: " ${MRPT_INCLUDE_DIRS})
#link_directories(${MRPT_LIBRARY_DIRS})
#MESSAGE( STATUS "MRPT_LIBRARY_DIRS: " ${MRPT_LIBS})
MESSAGE( STATUS "MRPT_LIBRARY_DIRS: " ${MRPT_LIBRARIES})
@@ -55,9 +47,9 @@ ENDIF()
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
INCLUDE_DIRS include
LIBRARIES laser_odometry
LIBRARIES ${PROJECT_NAME}
CATKIN_DEPENDS nav_msgs roscpp sensor_msgs std_msgs tf
#DEPENDS system_lib
DEPENDS MRPT
)
## Specify additional locations of header files
@@ -65,19 +57,19 @@ catkin_package(
include_directories(include)
include_directories(
SYSTEM
${catkin_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}
${EIGEN_INCLUDE_DIRS}
${MRPT_INCLUDE_DIRS}
)
## Declare a cpp executable
add_executable(rf2o_laser_odometry_node src/CLaserOdometry2D.cpp)
## Specify libraries to link a library or executable target against
target_link_libraries(rf2o_laser_odometry_node
${catkin_LIBRARIES}
${Boost_LIBRARIES}
${EIGEN_LIBRARIES}
${MRPT_LIBS}
## Declare a cpp library
add_library(${PROJECT_NAME}
src/CLaserOdometry2D.cpp
)
target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES} ${MRPT_LIBS})
## Declare a cpp executable
add_executable(rf2o_laser_odometry_node src/CLaserOdometry2DNode.cpp)
target_link_libraries(rf2o_laser_odometry_node ${PROJECT_NAME} ${catkin_LIBRARIES})

View File

@@ -17,24 +17,19 @@
#define CLaserOdometry2D_H
#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/LaserScan.h>
#include <geometry_msgs/Twist.h>
// MRPT related headers
#include <mrpt/version.h>
#if MRPT_VERSION>=0x130
#include <mrpt/obs/CObservation2DRangeScan.h>
#include <mrpt/obs/CObservationOdometry.h>
#include <mrpt/utils/CTicTac.h>
using namespace mrpt::obs;
# include <mrpt/obs/CObservation2DRangeScan.h>
# include <mrpt/obs/CObservationOdometry.h>
typedef mrpt::obs::CObservation2DRangeScan CObservation2DRangeScan;
#else
# include <mrpt/slam/CObservation2DRangeScan.h>
# include <mrpt/slam/CObservationOdometry.h>
using namespace mrpt::slam;
#include <mrpt/utils.h>
typedef mrpt::poses::CObservation2DRangeScan CObservation2DRangeScan;
#endif
#if MRPT_VERSION<0x150
@@ -43,7 +38,8 @@
#include <mrpt/system/os.h>
#include <mrpt/poses/CPose3D.h>
#include <mrpt/opengl.h>
#include <mrpt/utils.h>
//#include <mrpt/opengl.h>
#include <mrpt/math/CHistogram.h>
#include <boost/bind.hpp>
@@ -60,34 +56,26 @@ class CLaserOdometry2D
public:
CLaserOdometry2D();
~CLaserOdometry2D();
bool is_initialized();
bool scan_available();
void Init();
void odometryCalculation();
std::string laser_scan_topic;
std::string odom_topic;
bool publish_tf;
std::string base_frame_id;
std::string odom_frame_id;
std::string init_pose_from_topic;
double freq;
void Init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose);
bool is_initialized();
void odometryCalculation(const sensor_msgs::LaserScan& scan);
void setLaserPose(const mrpt::poses::CPose3D& laser_pose);
const mrpt::poses::CPose3D& getIncrement() const;
const Eigen::Matrix<float, 3, 3>& getIncrementCovariance() const;
mrpt::poses::CPose3D& getPose();
const mrpt::poses::CPose3D& getPose() const;
protected:
ros::NodeHandle n;
sensor_msgs::LaserScan last_scan;
bool module_initialized,first_laser_scan,new_scan_available, GT_pose_initialized, verbose;
tf::TransformListener tf_listener; //Do not put inside the callback
tf::TransformBroadcaster odom_broadcaster;
nav_msgs::Odometry initial_robot_pose;
//Subscriptions & Publishers
ros::Subscriber laser_sub, initPose_sub;
ros::Publisher odom_pub;
//CallBacks
void LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan);
void initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose);
bool verbose,module_initialized,first_laser_scan;
// Internal Data
std::vector<Eigen::MatrixXf> range;
@@ -103,7 +91,7 @@ protected:
std::vector<Eigen::MatrixXf> yy_old;
std::vector<Eigen::MatrixXf> yy_warped;
std::vector<Eigen::MatrixXf> transformations;
Eigen::MatrixXf range_wf;
Eigen::MatrixXf dtita;
Eigen::MatrixXf dt;
@@ -131,17 +119,24 @@ protected:
unsigned int iter_irls;
float g_mask[5];
double lin_speed, ang_speed;
//mrpt::gui::CDisplayWindowPlots window;
mrpt::utils::CTicTac m_clock;
float m_runtime;
ros::Time last_odom_time;
ros::Time last_odom_time, current_scan_time;
mrpt::math::CMatrixFloat31 kai_abs;
mrpt::math::CMatrixFloat31 kai_loc;
mrpt::math::CMatrixFloat31 kai_loc_old;
mrpt::math::CMatrixFloat31 kai_loc_level;
mrpt::poses::CPose3D laser_pose;
mrpt::poses::CPose3D last_increment;
mrpt::poses::CPose3D laser_pose_on_robot;
mrpt::poses::CPose3D laser_pose_on_robot_inv;
mrpt::poses::CPose3D laser_pose;
mrpt::poses::CPose3D laser_oldpose;
mrpt::poses::CPose3D robot_pose;
mrpt::poses::CPose3D robot_oldpose;
@@ -155,7 +150,7 @@ protected:
void calculateCoord();
void performWarping();
void calculaterangeDerivativesSurface();
void computeNormals();
void computeNormals();
void computeWeights();
void findNullPoints();
void solveSystemOneLevel();

View File

@@ -14,119 +14,54 @@
******************************************************************************************** */
#include "rf2o_laser_odometry/CLaserOdometry2D.h"
using namespace mrpt;
using namespace mrpt::math;
using namespace mrpt::utils;
using namespace mrpt::poses;
using namespace std;
using namespace Eigen;
// --------------------------------------------
// CLaserOdometry2D
//---------------------------------------------
CLaserOdometry2D::CLaserOdometry2D()
{
ROS_INFO("Initializing RF2O node...");
//Read Parameters
//----------------
ros::NodeHandle pn("~");
pn.param<std::string>("laser_scan_topic",laser_scan_topic,"/laser_scan");
pn.param<std::string>("odom_topic", odom_topic, "/odom_rf2o");
pn.param<std::string>("base_frame_id", base_frame_id, "/base_link");
pn.param<std::string>("odom_frame_id", odom_frame_id, "/odom");
pn.param<bool>("publish_tf", publish_tf, true);
pn.param<std::string>("init_pose_from_topic", init_pose_from_topic, "/base_pose_ground_truth");
pn.param<double>("freq",freq,10.0);
pn.param<bool>("verbose", verbose, true);
//Publishers and Subscribers
//--------------------------
odom_pub = pn.advertise<nav_msgs::Odometry>(odom_topic, 5);
laser_sub = n.subscribe<sensor_msgs::LaserScan>(laser_scan_topic,1,&CLaserOdometry2D::LaserCallBack,this);
//init pose??
if (init_pose_from_topic != "")
{
initPose_sub = n.subscribe<nav_msgs::Odometry>(init_pose_from_topic,1,&CLaserOdometry2D::initPoseCallBack,this);
GT_pose_initialized = false;
}
else
{
GT_pose_initialized = true;
initial_robot_pose.pose.pose.position.x = 0;
initial_robot_pose.pose.pose.position.y = 0;
initial_robot_pose.pose.pose.position.z = 0;
initial_robot_pose.pose.pose.orientation.w = 0;
initial_robot_pose.pose.pose.orientation.x = 0;
initial_robot_pose.pose.pose.orientation.y = 0;
initial_robot_pose.pose.pose.orientation.z = 0;
}
//Init variables
module_initialized = false;
first_laser_scan = true;
CLaserOdometry2D::CLaserOdometry2D() :
module_initialized(false),
first_laser_scan(true)
{
//
}
CLaserOdometry2D::~CLaserOdometry2D()
{
//
}
void CLaserOdometry2D::setLaserPose(const mrpt::poses::CPose3D& laser_pose)
{
//Set laser pose on the robot
laser_pose_on_robot = laser_pose;
laser_pose_on_robot_inv = laser_pose_on_robot;
laser_pose_on_robot_inv.inverse();
}
bool CLaserOdometry2D::is_initialized()
{
return module_initialized;
}
bool CLaserOdometry2D::scan_available()
{
return new_scan_available;
}
void CLaserOdometry2D::Init()
void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose)
{
//Got an initial scan laser, obtain its parametes
if (verbose)
ROS_INFO("[rf2o] Got first Laser Scan .... Configuring node");
width = last_scan.ranges.size(); // Num of samples (size) of the scan laser
ROS_INFO_COND(verbose, "[rf2o] Got first Laser Scan .... Configuring node");
width = scan.ranges.size(); // Num of samples (size) of the scan laser
cols = width; // Max reolution. Should be similar to the width parameter
fovh = fabs(last_scan.angle_max - last_scan.angle_min); // Horizontal Laser's FOV
fovh = fabs(scan.angle_max - scan.angle_min); // Horizontal Laser's FOV
ctf_levels = 5; // Coarse-to-Fine levels
iter_irls = 5; //Num iterations to solve iterative reweighted least squares
//Set laser pose on the robot (through tF)
// This allow estimation of the odometry with respect to the robot base reference system.
mrpt::poses::CPose3D LaserPoseOnTheRobot;
tf::StampedTransform transform;
try
{
tf_listener.lookupTransform(base_frame_id, last_scan.header.frame_id, ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
}
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
const tf::Vector3 &t = transform.getOrigin();
LaserPoseOnTheRobot.x() = t[0];
LaserPoseOnTheRobot.y() = t[1];
LaserPoseOnTheRobot.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
LaserPoseOnTheRobot.setRotationMatrix(R);
//Robot initial pose (see MQTT:bridge)
mrpt::poses::CPose3D robotInitialPose;
geometry_msgs::Pose _src = initial_robot_pose.pose.pose;
geometry_msgs::Pose _src = initial_robot_pose;
robotInitialPose.x(_src.position.x);
robotInitialPose.y(_src.position.y);
@@ -141,12 +76,9 @@ void CLaserOdometry2D::Init()
robotInitialPose.setYawPitchRoll(yaw,pitch,roll);
//robotInitialPose.phi(yaw);
//Set the initial pose
laser_pose = robotInitialPose + LaserPoseOnTheRobot;
laser_oldpose = robotInitialPose + LaserPoseOnTheRobot;
laser_pose = robotInitialPose + laser_pose_on_robot;
laser_oldpose = robotInitialPose + laser_pose_on_robot;
// Init module (internal)
//------------------------
@@ -226,13 +158,36 @@ void CLaserOdometry2D::Init()
last_odom_time = ros::Time::now();
}
const mrpt::poses::CPose3D& CLaserOdometry2D::getIncrement() const
{
return last_increment;
}
void CLaserOdometry2D::odometryCalculation()
const Eigen::Matrix<float, 3, 3>& CLaserOdometry2D::getIncrementCovariance() const
{
return cov_odo;
}
mrpt::poses::CPose3D& CLaserOdometry2D::getPose()
{
return robot_pose;
}
const mrpt::poses::CPose3D& CLaserOdometry2D::getPose() const
{
return robot_pose;
}
void CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan)
{
//==================================================================================
// DIFERENTIAL ODOMETRY MULTILEVEL
//==================================================================================
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = scan.ranges[i];
m_clock.Tic();
createImagePyramid();
@@ -284,19 +239,18 @@ void CLaserOdometry2D::odometryCalculation()
}
m_runtime = 1000*m_clock.Tac();
if (verbose)
ROS_INFO("[rf2o] execution time (ms): %f", m_runtime);
ROS_INFO_COND(verbose, "[rf2o] execution time (ms): %f", m_runtime);
//Update poses
PoseUpdate();
new_scan_available = false; //avoids the possibility to run twice on the same laser scan
}
void CLaserOdometry2D::createImagePyramid()
{
const float max_range_dif = 0.3f;
//Push the frames back
range_old.swap(range);
xx_old.swap(xx);
@@ -312,21 +266,21 @@ void CLaserOdometry2D::createImagePyramid()
{
unsigned int s = pow(2.f,int(i));
cols_i = ceil(float(width)/float(s));
const unsigned int i_1 = i-1;
//First level -> Filter (not downsampling);
if (i == 0)
{
for (unsigned int u = 0; u < cols_i; u++)
{
{
const float dcenter = range_wf(u);
//Inner pixels
if ((u>1)&&(u<cols_i-2))
{
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
@@ -351,16 +305,16 @@ void CLaserOdometry2D::createImagePyramid()
else
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
for (int l=-2; l<3; l++)
for (int l=-2; l<3; l++)
{
const int indu = u+l;
if ((indu>=0)&&(indu<cols_i))
{
const float abs_dif = abs(range_wf(indu)-dcenter);
const float abs_dif = abs(range_wf(indu)-dcenter);
if (abs_dif < max_range_dif)
{
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -381,17 +335,17 @@ void CLaserOdometry2D::createImagePyramid()
// Downsampling
//-----------------------------------------------------------------------------
else
{
{
for (unsigned int u = 0; u < cols_i; u++)
{
const int u2 = 2*u;
const int u2 = 2*u;
const float dcenter = range[i_1](u2);
//Inner pixels
if ((u>0)&&(u<cols_i-1))
{
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
@@ -416,18 +370,18 @@ void CLaserOdometry2D::createImagePyramid()
else
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
const unsigned int cols_i2 = range[i_1].cols();
for (int l=-2; l<3; l++)
for (int l=-2; l<3; l++)
{
const int indu = u2+l;
if ((indu>=0)&&(indu<cols_i2))
{
const float abs_dif = abs(range[i_1](indu)-dcenter);
const float abs_dif = abs(range[i_1](indu)-dcenter);
if (abs_dif < max_range_dif)
{
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -446,7 +400,7 @@ void CLaserOdometry2D::createImagePyramid()
}
//Calculate coordinates "xy" of the points
for (unsigned int u = 0; u < cols_i; u++)
for (unsigned int u = 0; u < cols_i; u++)
{
if (range[i](u) > 0.f)
{
@@ -466,7 +420,7 @@ void CLaserOdometry2D::createImagePyramid()
void CLaserOdometry2D::calculateCoord()
{
{
for (unsigned int u = 0; u < cols_i; u++)
{
if ((range_old[image_level](u) == 0.f) || (range_warped[image_level](u) == 0.f))
@@ -486,17 +440,17 @@ void CLaserOdometry2D::calculateCoord()
void CLaserOdometry2D::calculaterangeDerivativesSurface()
{
{
//The gradient size ir reserved at the maximum size (at the constructor)
//Compute connectivity
rtita.resize(1,cols_i); //Defined in a different way now, without inversion
rtita.assign(1.f);
rtita.assign(1.f);
for (unsigned int u = 0; u < cols_i-1; u++)
{
const float dist = square(xx_inter[image_level](u+1) - xx_inter[image_level](u))
+ square(yy_inter[image_level](u+1) - yy_inter[image_level](u));
const float dist = mrpt::math::square(xx_inter[image_level](u+1) - xx_inter[image_level](u))
+ mrpt::math::square(yy_inter[image_level](u+1) - yy_inter[image_level](u));
if (dist > 0.f)
rtita(u) = sqrt(dist);
}
@@ -569,15 +523,15 @@ void CLaserOdometry2D::computeWeights()
{
//The maximum weight size is reserved at the constructor
weights.assign(0.f);
//Parameters for error_linearization
const float kdtita = 1.f;
const float kdt = kdtita/square(fps);
const float kdt = kdtita/mrpt::math::square(fps);
const float k2d = 0.2f;
for (unsigned int u = 1; u < cols_i-1; u++)
if (null(u) == 0)
{
{
// Compute derivatives
//-----------------------------------------------------------------------
const float ini_dtita = range_old[image_level](u+1) - range_old[image_level](u-1);
@@ -586,7 +540,7 @@ void CLaserOdometry2D::computeWeights()
const float dtitat = ini_dtita - final_dtita;
const float dtita2 = dtita(u+1) - dtita(u-1);
const float w_der = kdt*square(dt(u)) + kdtita*square(dtita(u)) + k2d*(abs(dtitat) + abs(dtita2));
const float w_der = kdt*mrpt::math::square(dt(u)) + kdtita*mrpt::math::square(dtita(u)) + k2d*(abs(dtitat) + abs(dtita2));
weights(u) = sqrt(1.f/w_der);
}
@@ -640,15 +594,15 @@ void CLaserOdometry2D::solveSystemOneLevel()
cont++;
}
//Solve the linear system of equations using a minimum least squares method
MatrixXf AtA, AtB;
Eigen::MatrixXf AtA, AtB;
AtA.multiply_AtA(A);
AtB.multiply_AtB(A,B);
Var = AtA.ldlt().solve(AtB);
//Covariance matrix calculation Cov Order -> vx,vy,wz
MatrixXf res(num_valid_range,1);
Eigen::MatrixXf res(num_valid_range,1);
res = A*Var - B;
cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm();
@@ -684,13 +638,13 @@ void CLaserOdometry2D::solveSystemNonLinear()
}
//Solve the linear system of equations using a minimum least squares method
MatrixXf AtA, AtB;
Eigen::MatrixXf AtA, AtB;
AtA.multiply_AtA(A);
AtB.multiply_AtB(A,B);
Var = AtA.ldlt().solve(AtB);
//Covariance matrix calculation Cov Order -> vx,vy,wz
MatrixXf res(num_valid_range,1);
Eigen::MatrixXf res(num_valid_range,1);
res = A*Var - B;
//cout << endl << "max res: " << res.maxCoeff();
//cout << endl << "min res: " << res.minCoeff();
@@ -711,7 +665,7 @@ void CLaserOdometry2D::solveSystemNonLinear()
const float k = 10.f/aver_dt; //200
//float energy = 0.f;
//for (unsigned int i=0; i<res.rows(); i++)
// energy += log(1.f + square(k*res(i)));
// energy += log(1.f + mrpt::math::square(k*res(i)));
//printf("\n\nEnergy(0) = %f", energy);
//Solve iterative reweighted least squares
@@ -723,7 +677,7 @@ void CLaserOdometry2D::solveSystemNonLinear()
for (unsigned int u = 1; u < cols_i-1; u++)
if (null(u) == 0)
{
const float res_weight = sqrt(1.f/(1.f + square(k*res(cont))));
const float res_weight = sqrt(1.f/(1.f + mrpt::math::square(k*res(cont))));
//Fill the matrix Aw
Aw(cont,0) = res_weight*A(cont,0);
@@ -742,17 +696,17 @@ void CLaserOdometry2D::solveSystemNonLinear()
////Compute the energy
//energy = 0.f;
//for (unsigned int j=0; j<res.rows(); j++)
// energy += log(1.f + square(k*res(j)));
// energy += log(1.f + mrpt::math::square(k*res(j)));
//printf("\nEnergy(%d) = %f", i, energy);
}
cov_odo = (1.f/float(num_valid_range-3))*AtA.inverse()*res.squaredNorm();
kai_loc_level = Var;
if (verbose)
std::cout << endl << "[rf2o] COV_ODO: " << cov_odo << endl;
ROS_INFO_STREAM_COND(verbose, "[rf2o] COV_ODO: " << cov_odo);
}
void CLaserOdometry2D::Reset(CPose3D ini_pose, CObservation2DRangeScan scan)
void CLaserOdometry2D::Reset(mrpt::poses::CPose3D ini_pose, CObservation2DRangeScan scan)
{
//Set the initial pose
laser_pose = ini_pose;
@@ -767,12 +721,13 @@ void CLaserOdometry2D::Reset(CPose3D ini_pose, CObservation2DRangeScan scan)
void CLaserOdometry2D::performWarping()
{
Matrix3f acu_trans;
Eigen::Matrix3f acu_trans;
acu_trans.setIdentity();
for (unsigned int i=1; i<=level; i++)
acu_trans = transformations[i-1]*acu_trans;
MatrixXf wacu(1,cols_i);
Eigen::MatrixXf wacu(1,cols_i);
wacu.assign(0.f);
range_warped[image_level].assign(0.f);
@@ -780,7 +735,7 @@ void CLaserOdometry2D::performWarping()
const float kdtita = cols_lim/fovh;
for (unsigned int j = 0; j<cols_i; j++)
{
{
if (range[image_level](j) > 0.f)
{
//Transform point to the warped reference frame
@@ -808,11 +763,11 @@ void CLaserOdometry2D::performWarping()
}
else
{
const float w_r = square(delta_l);
const float w_r = mrpt::math::square(delta_l);
range_warped[image_level](uwarp_r) += w_r*range_w;
wacu(uwarp_r) += w_r;
const float w_l = square(delta_r);
const float w_l = mrpt::math::square(delta_r);
range_warped[image_level](uwarp_l) += w_l*range_w;
wacu(uwarp_l) += w_l;
}
@@ -822,7 +777,7 @@ void CLaserOdometry2D::performWarping()
//Scale the averaged range and compute coordinates
for (unsigned int u = 0; u<cols_i; u++)
{
{
if (wacu(u) > 0.f)
{
const float tita = -0.5f*fovh + float(u)/kdtita;
@@ -847,28 +802,27 @@ void CLaserOdometry2D::filterLevelSolution()
{
// Calculate Eigenvalues and Eigenvectors
//----------------------------------------------------------
SelfAdjointEigenSolver<MatrixXf> eigensolver(cov_odo);
if (eigensolver.info() != Success)
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXf> eigensolver(cov_odo);
if (eigensolver.info() != Eigen::Success)
{
if (verbose)
printf("[rf2o] ERROR: Eigensolver couldn't find a solution. Pose is not updated");
ROS_INFO_COND(verbose, "[rf2o] ERROR: Eigensolver couldn't find a solution. Pose is not updated");
return;
}
//First, we have to describe both the new linear and angular speeds in the "eigenvector" basis
//-------------------------------------------------------------------------------------------------
Matrix<float,3,3> Bii;
Matrix<float,3,1> kai_b;
Eigen::Matrix<float,3,3> Bii;
Eigen::Matrix<float,3,1> kai_b;
Bii = eigensolver.eigenvectors();
kai_b = Bii.colPivHouseholderQr().solve(kai_loc_level);
//Second, we have to describe both the old linear and angular speeds in the "eigenvector" basis too
//-------------------------------------------------------------------------------------------------
CMatrixFloat31 kai_loc_sub;
mrpt::math::CMatrixFloat31 kai_loc_sub;
//Important: we have to substract the solutions from previous levels
Matrix3f acu_trans;
Eigen::Matrix3f acu_trans;
acu_trans.setIdentity();
for (unsigned int i=0; i<level; i++)
acu_trans = transformations[i]*acu_trans;
@@ -877,17 +831,23 @@ void CLaserOdometry2D::filterLevelSolution()
kai_loc_sub(1) = -fps*acu_trans(1,2);
if (acu_trans(0,0) > 1.f)
kai_loc_sub(2) = 0.f;
else
kai_loc_sub(2) = -fps*acos(acu_trans(0,0))*sign(acu_trans(1,0));
else
{
#if MRPT_VERSION>=0x130
kai_loc_sub(2) = -fps*acos(acu_trans(0,0))*mrpt::utils::sign(acu_trans(1,0));
#else
kai_loc_sub(2) = -fps*acos(acu_trans(0,0))*mrpt::math::sign(acu_trans(1,0));
#endif
}
kai_loc_sub += kai_loc_old;
Matrix<float,3,1> kai_b_old;
Eigen::Matrix<float,3,1> kai_b_old;
kai_b_old = Bii.colPivHouseholderQr().solve(kai_loc_sub);
//Filter speed
const float cf = 15e3f*expf(-int(level)), df = 0.05f*expf(-int(level));
Matrix<float,3,1> kai_b_fil;
Eigen::Matrix<float,3,1> kai_b_fil;
for (unsigned int i=0; i<3; i++)
{
kai_b_fil(i,0) = (kai_b(i,0) + (cf*eigensolver.eigenvalues()(i,0) + df)*kai_b_old(i,0))/(1.f + cf*eigensolver.eigenvalues()(i,0) + df);
@@ -895,7 +855,7 @@ void CLaserOdometry2D::filterLevelSolution()
}
//Transform filtered speed to local reference frame and compute transformation
Matrix<float,3,1> kai_loc_fil = Bii.inverse().colPivHouseholderQr().solve(kai_b_fil);
Eigen::Matrix<float,3,1> kai_loc_fil = Bii.inverse().colPivHouseholderQr().solve(kai_b_fil);
//transformation
const float incrx = kai_loc_fil(0)/fps;
@@ -914,7 +874,7 @@ void CLaserOdometry2D::PoseUpdate()
{
//First, compute the overall transformation
//---------------------------------------------------
Matrix3f acu_trans;
Eigen::Matrix3f acu_trans;
acu_trans.setIdentity();
for (unsigned int i=1; i<=ctf_levels; i++)
acu_trans = transformations[i-1]*acu_trans;
@@ -927,8 +887,13 @@ void CLaserOdometry2D::PoseUpdate()
if (acu_trans(0,0) > 1.f)
kai_loc(2) = 0.f;
else
kai_loc(2) = fps*acos(acu_trans(0,0))*sign(acu_trans(1,0));
{
#if MRPT_VERSION>=0x130
kai_loc(2) = fps*acos(acu_trans(0,0))*mrpt::utils::sign(acu_trans(1,0));
#else
kai_loc(2) = fps*acos(acu_trans(0,0))*mrpt::math::sign(acu_trans(1,0));
#endif
}
//cout << endl << "Arc cos (incr tita): " << kai_loc(2);
float phi = laser_pose.yaw();
@@ -941,9 +906,12 @@ void CLaserOdometry2D::PoseUpdate()
// Update poses
//-------------------------------------------------------
laser_oldpose = laser_pose;
math::CMatrixDouble33 aux_acu = acu_trans;
poses::CPose2D pose_aux_2D(acu_trans(0,2), acu_trans(1,2), kai_loc(2)/fps);
laser_pose = laser_pose + CPose3D(pose_aux_2D);
mrpt::math::CMatrixDouble33 aux_acu = acu_trans;
mrpt::poses::CPose2D pose_aux_2D(acu_trans(0,2), acu_trans(1,2), kai_loc(2)/fps);
laser_pose = laser_pose + mrpt::poses::CPose3D(pose_aux_2D);
last_increment = pose_aux_2D;
@@ -954,56 +922,26 @@ void CLaserOdometry2D::PoseUpdate()
kai_loc_old(1) = -kai_abs(0)*sin(phi) + kai_abs(1)*cos(phi);
kai_loc_old(2) = kai_abs(2);
if (verbose)
ROS_INFO("[rf2o] LASERodom = [%f %f %f]",laser_pose.x(),laser_pose.y(),laser_pose.yaw());
// GET ROBOT POSE from LASER POSE
//------------------------------
mrpt::poses::CPose3D LaserPoseOnTheRobot_inv;
tf::StampedTransform transform;
try
{
tf_listener.lookupTransform(last_scan.header.frame_id, base_frame_id, ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
}
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
const tf::Vector3 &t = transform.getOrigin();
LaserPoseOnTheRobot_inv.x() = t[0];
LaserPoseOnTheRobot_inv.y() = t[1];
LaserPoseOnTheRobot_inv.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
LaserPoseOnTheRobot_inv.setRotationMatrix(R);
ROS_INFO_COND(verbose, "[rf2o] LASERodom = [%f %f %f]",laser_pose.x(),laser_pose.y(),laser_pose.yaw());
//Compose Transformations
robot_pose = laser_pose + LaserPoseOnTheRobot_inv;
if (verbose)
ROS_INFO("BASEodom = [%f %f %f]",robot_pose.x(),robot_pose.y(),robot_pose.yaw());
robot_pose = laser_pose + laser_pose_on_robot_inv;
ROS_INFO_COND(verbose, "BASEodom = [%f %f %f]",robot_pose.x(),robot_pose.y(),robot_pose.yaw());
// Estimate linear/angular speeds (mandatory for base_local_planner)
// last_scan -> the last scan received
// last_odom_time -> The time of the previous scan lasser used to estimate the pose
//-------------------------------------------------------------------------------------
double time_inc_sec = (last_scan.header.stamp - last_odom_time).toSec();
last_odom_time = last_scan.header.stamp;
double lin_speed = acu_trans(0,2) / time_inc_sec;
//double lin_speed = sqrt( square(robot_oldpose.x()-robot_pose.x()) + square(robot_oldpose.y()-robot_pose.y()) )/time_inc_sec;
double time_inc_sec = (current_scan_time - last_odom_time).toSec();
last_odom_time = current_scan_time;
lin_speed = acu_trans(0,2) / time_inc_sec;
//double lin_speed = sqrt( mrpt::math::square(robot_oldpose.x()-robot_pose.x()) + mrpt::math::square(robot_oldpose.y()-robot_pose.y()) )/time_inc_sec;
double ang_inc = robot_pose.yaw() - robot_oldpose.yaw();
if (ang_inc > 3.14159)
ang_inc -= 2*3.14159;
if (ang_inc < -3.14159)
ang_inc += 2*3.14159;
double ang_speed = ang_inc/time_inc_sec;
ang_speed = ang_inc/time_inc_sec;
robot_oldpose = robot_pose;
//filter speeds
@@ -1020,112 +958,4 @@ void CLaserOdometry2D::PoseUpdate()
double sum2 = std::accumulate(last_m_ang_speeds.begin(), last_m_ang_speeds.end(), 0.0);
ang_speed = sum2 / last_m_ang_speeds.size();
*/
//first, we'll publish the odometry over tf
//---------------------------------------
if (publish_tf)
{
//ROS_INFO("[rf2o] Publishing TF: [base_link] to [odom]");
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.stamp = ros::Time::now();
odom_trans.header.frame_id = odom_frame_id;
odom_trans.child_frame_id = base_frame_id;
odom_trans.transform.translation.x = robot_pose.x();
odom_trans.transform.translation.y = robot_pose.y();
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//send the transform
odom_broadcaster.sendTransform(odom_trans);
}
//next, we'll publish the odometry message over ROS
//-------------------------------------------------
//ROS_INFO("[rf2o] Publishing Odom Topic");
nav_msgs::Odometry odom;
odom.header.stamp = ros::Time::now();
odom.header.frame_id = odom_frame_id;
//set the position
odom.pose.pose.position.x = robot_pose.x();
odom.pose.pose.position.y = robot_pose.y();
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//set the velocity
odom.child_frame_id = base_frame_id;
odom.twist.twist.linear.x = lin_speed; //linear speed
odom.twist.twist.linear.y = 0.0;
odom.twist.twist.angular.z = ang_speed; //angular speed
//publish the message
odom_pub.publish(odom);
}
//-----------------------------------------------------------------------------------
// CALLBACKS
//-----------------------------------------------------------------------------------
void CLaserOdometry2D::LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan)
{
if (GT_pose_initialized)
{
//Keep in memory the last received laser_scan
last_scan = *new_scan;
//Initialize module on first scan
if (first_laser_scan)
{
Init();
first_laser_scan = false;
}
else
{
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = new_scan->ranges[i];
new_scan_available = true;
}
}
}
void CLaserOdometry2D::initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose)
{
//Initialize module on first GT pose. Else do Nothing!
if (!GT_pose_initialized)
{
initial_robot_pose = *new_initPose;
GT_pose_initialized = true;
}
}
//-----------------------------------------------------------------------------------
// MAIN
//-----------------------------------------------------------------------------------
int main(int argc, char** argv)
{
ros::init(argc, argv, "RF2O_LaserOdom");
CLaserOdometry2D myLaserOdom;
//Main Loop
//----------
ROS_INFO("[rf2o] initialization complete...Looping");
ros::Rate loop_rate(myLaserOdom.freq);
while (ros::ok())
{
ros::spinOnce(); //Check for new laser scans
if( myLaserOdom.is_initialized() && myLaserOdom.scan_available() )
{
//Process odometry estimation
myLaserOdom.odometryCalculation();
}
else
{
ROS_WARN("[rf2o] Waiting for laser_scans....") ;
}
loop_rate.sleep();
}
return(0);
}

View File

@@ -0,0 +1,275 @@
/** ****************************************************************************************
* This node presents a fast and precise method to estimate the planar motion of a lidar
* from consecutive range scans. It is very useful for the estimation of the robot odometry from
* 2D laser range measurements.
* This module is developed for mobile robots with innacurate or inexistent built-in odometry.
* It allows the estimation of a precise odometry with low computational cost.
* For more information, please refer to:
*
* Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach. ICRA'16.
* Available at: http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/217
*
* Maintainer: Javier G. Monroy
* MAPIR group: http://mapir.isa.uma.es/
******************************************************************************************** */
#include "rf2o_laser_odometry/CLaserOdometry2D.h"
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>
class CLaserOdometry2DNode : CLaserOdometry2D
{
public:
CLaserOdometry2DNode();
~CLaserOdometry2DNode();
void process(const ros::TimerEvent &);
void publish();
bool setLaserPoseFromTf();
public:
bool publish_tf,new_scan_available;
double freq;
std::string laser_scan_topic;
std::string odom_topic;
std::string base_frame_id;
std::string odom_frame_id;
std::string init_pose_from_topic;
ros::NodeHandle n;
sensor_msgs::LaserScan last_scan;
bool GT_pose_initialized;
tf::TransformListener tf_listener; //Do not put inside the callback
tf::TransformBroadcaster odom_broadcaster;
nav_msgs::Odometry initial_robot_pose;
//Subscriptions & Publishers
ros::Subscriber laser_sub, initPose_sub;
ros::Publisher odom_pub;
bool scan_available();
//CallBacks
void LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan);
void initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose);
};
CLaserOdometry2DNode::CLaserOdometry2DNode() :
CLaserOdometry2D()
{
ROS_INFO("Initializing RF2O node...");
//Read Parameters
//----------------
ros::NodeHandle pn("~");
pn.param<std::string>("laser_scan_topic",laser_scan_topic,"/laser_scan");
pn.param<std::string>("odom_topic", odom_topic, "/odom_rf2o");
pn.param<std::string>("base_frame_id", base_frame_id, "/base_link");
pn.param<std::string>("odom_frame_id", odom_frame_id, "/odom");
pn.param<bool>("publish_tf", publish_tf, true);
pn.param<std::string>("init_pose_from_topic", init_pose_from_topic, "/base_pose_ground_truth");
pn.param<double>("freq",freq,10.0);
pn.param<bool>("verbose", verbose, true);
//Publishers and Subscribers
//--------------------------
odom_pub = pn.advertise<nav_msgs::Odometry>(odom_topic, 5);
laser_sub = n.subscribe<sensor_msgs::LaserScan>(laser_scan_topic,1,&CLaserOdometry2DNode::LaserCallBack,this);
//init pose??
if (init_pose_from_topic != "")
{
initPose_sub = n.subscribe<nav_msgs::Odometry>(init_pose_from_topic,1,&CLaserOdometry2DNode::initPoseCallBack,this);
GT_pose_initialized = false;
}
else
{
GT_pose_initialized = true;
initial_robot_pose.pose.pose.position.x = 0;
initial_robot_pose.pose.pose.position.y = 0;
initial_robot_pose.pose.pose.position.z = 0;
initial_robot_pose.pose.pose.orientation.w = 0;
initial_robot_pose.pose.pose.orientation.x = 0;
initial_robot_pose.pose.pose.orientation.y = 0;
initial_robot_pose.pose.pose.orientation.z = 0;
}
setLaserPoseFromTf();
//Init variables
module_initialized = false;
first_laser_scan = true;
ROS_INFO_STREAM("Listening laser scan from topic: " << laser_sub.getTopic());
}
CLaserOdometry2DNode::~CLaserOdometry2DNode()
{
//
}
bool CLaserOdometry2DNode::setLaserPoseFromTf()
{
bool retrieved = false;
// Set laser pose on the robot (through tF)
// This allow estimation of the odometry with respect to the robot base reference system.
tf::StampedTransform transform;
transform.setIdentity();
try
{
tf_listener.lookupTransform(base_frame_id, last_scan.header.frame_id, ros::Time(0), transform);
retrieved = true;
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
retrieved = false;
}
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
mrpt::poses::CPose3D laser_tf;
const tf::Vector3 &t = transform.getOrigin();
laser_tf.x() = t[0];
laser_tf.y() = t[1];
laser_tf.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
laser_tf.setRotationMatrix(R);
setLaserPose(laser_tf);
return retrieved;
}
bool CLaserOdometry2DNode::scan_available()
{
return new_scan_available;
}
void CLaserOdometry2DNode::process(const ros::TimerEvent&)
{
if( is_initialized() && scan_available() )
{
//Process odometry estimation
odometryCalculation(last_scan);
publish();
new_scan_available = false; //avoids the possibility to run twice on the same laser scan
}
else
{
ROS_WARN("Waiting for laser_scans....") ;
}
}
//-----------------------------------------------------------------------------------
// CALLBACKS
//-----------------------------------------------------------------------------------
void CLaserOdometry2DNode::LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan)
{
if (GT_pose_initialized)
{
//Keep in memory the last received laser_scan
last_scan = *new_scan;
current_scan_time = last_scan.header.stamp;
//Initialize module on first scan
if (!first_laser_scan)
{
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = new_scan->ranges[i];
new_scan_available = true;
}
else
{
Init(last_scan, initial_robot_pose.pose.pose);
first_laser_scan = false;
}
}
}
void CLaserOdometry2DNode::initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose)
{
//Initialize module on first GT pose. Else do Nothing!
if (!GT_pose_initialized)
{
initial_robot_pose = *new_initPose;
GT_pose_initialized = true;
}
}
void CLaserOdometry2DNode::publish()
{
//first, we'll publish the odometry over tf
//---------------------------------------
if (publish_tf)
{
//ROS_INFO("[rf2o] Publishing TF: [base_link] to [odom]");
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.stamp = ros::Time::now();
odom_trans.header.frame_id = odom_frame_id;
odom_trans.child_frame_id = base_frame_id;
odom_trans.transform.translation.x = robot_pose.x();
odom_trans.transform.translation.y = robot_pose.y();
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//send the transform
odom_broadcaster.sendTransform(odom_trans);
}
//next, we'll publish the odometry message over ROS
//-------------------------------------------------
//ROS_INFO("[rf2o] Publishing Odom Topic");
nav_msgs::Odometry odom;
odom.header.stamp = ros::Time::now();
odom.header.frame_id = odom_frame_id;
//set the position
odom.pose.pose.position.x = robot_pose.x();
odom.pose.pose.position.y = robot_pose.y();
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//set the velocity
odom.child_frame_id = base_frame_id;
odom.twist.twist.linear.x = lin_speed; //linear speed
odom.twist.twist.linear.y = 0.0;
odom.twist.twist.angular.z = ang_speed; //angular speed
//publish the message
odom_pub.publish(odom);
}
//-----------------------------------------------------------------------------------
// MAIN
//-----------------------------------------------------------------------------------
int main(int argc, char** argv)
{
ros::init(argc, argv, "RF2O_LaserOdom");
CLaserOdometry2DNode myLaserOdomNode;
ros::TimerOptions timer_opt;
timer_opt.oneshot = false;
timer_opt.autostart = true;
timer_opt.callback_queue = ros::getGlobalCallbackQueue();
timer_opt.tracked_object = ros::VoidConstPtr();
timer_opt.callback = boost::bind(&CLaserOdometry2DNode::process, &myLaserOdomNode, _1);
timer_opt.period = ros::Rate(myLaserOdomNode.freq).expectedCycleTime();
ros::Timer rf2o_timer = ros::NodeHandle("~").createTimer(timer_opt);
ros::spin();
return EXIT_SUCCESS;
}