wip separating node from computation

This commit is contained in:
Jeremie Deray
2017-05-16 11:20:04 +02:00
committed by Jeremie Deray
parent 7c98c7e47c
commit 241358540a
4 changed files with 354 additions and 270 deletions

View File

@@ -52,8 +52,15 @@ include_directories(
${EIGEN_INCLUDE_DIRS}
)
## Declare a cpp library
add_library(${PROJECT_NAME}
src/CLaserOdometry2D.cpp
)
target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES})
## Declare a cpp executable
add_executable(rf2o_laser_odometry_node src/CLaserOdometry2D.cpp)
add_executable(rf2o_laser_odometry_node src/CLaserOdometry2DNode.cpp)
target_link_libraries(rf2o_laser_odometry_node ${PROJECT_NAME})
## Specify libraries to link a library or executable target against
target_link_libraries(rf2o_laser_odometry_node

View File

@@ -59,19 +59,13 @@ class CLaserOdometry2D
public:
CLaserOdometry2D();
~CLaserOdometry2D();
void Init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose);
bool is_initialized();
bool scan_available();
void Init();
void odometryCalculation();
std::string laser_scan_topic;
std::string odom_topic;
bool publish_tf;
std::string base_frame_id;
std::string odom_frame_id;
std::string init_pose_from_topic;
double freq;
<<<<<<< HEAD
protected:
ros::NodeHandle n;
sensor_msgs::LaserScan last_scan;
@@ -79,14 +73,15 @@ protected:
tf::TransformListener tf_listener; //Do not put inside the callback
tf::TransformBroadcaster odom_broadcaster;
nav_msgs::Odometry initial_robot_pose;
=======
void odometryCalculation(const sensor_msgs::LaserScan& scan);
>>>>>>> wip separating node from computation
//Subscriptions & Publishers
ros::Subscriber laser_sub, initPose_sub;
ros::Publisher odom_pub;
void setLaserPose(const tf::Transform& laser_pose);
//CallBacks
void LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan);
void initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose);
protected:
bool module_initialized,first_laser_scan;
// Internal Data
std::vector<Eigen::MatrixXf> range;
@@ -130,17 +125,22 @@ protected:
unsigned int iter_irls;
float g_mask[5];
double lin_speed, ang_speed;
//mrpt::gui::CDisplayWindowPlots window;
mrpt::utils::CTicTac m_clock;
float m_runtime;
ros::Time last_odom_time;
ros::Time last_odom_time, current_scan_time;
mrpt::math::CMatrixFloat31 kai_abs;
mrpt::math::CMatrixFloat31 kai_loc;
mrpt::math::CMatrixFloat31 kai_loc_old;
mrpt::math::CMatrixFloat31 kai_loc_level;
mrpt::poses::CPose3D laser_pose;
mrpt::poses::CPose3D laser_pose_on_robot;
mrpt::poses::CPose3D laser_pose_on_robot_inv;
mrpt::poses::CPose3D laser_pose;
mrpt::poses::CPose3D laser_oldpose;
mrpt::poses::CPose3D robot_pose;
mrpt::poses::CPose3D robot_oldpose;

View File

@@ -27,106 +27,57 @@ using namespace Eigen;
//---------------------------------------------
CLaserOdometry2D::CLaserOdometry2D()
{
ROS_INFO("Initializing RF2O node...");
//Read Parameters
//----------------
ros::NodeHandle pn("~");
pn.param<std::string>("laser_scan_topic",laser_scan_topic,"/laser_scan");
pn.param<std::string>("odom_topic", odom_topic, "/odom_rf2o");
pn.param<std::string>("base_frame_id", base_frame_id, "/base_link");
pn.param<std::string>("odom_frame_id", odom_frame_id, "/odom");
pn.param<bool>("publish_tf", publish_tf, true);
pn.param<std::string>("init_pose_from_topic", init_pose_from_topic, "/base_pose_ground_truth");
pn.param<double>("freq",freq,10.0);
pn.param<bool>("verbose", verbose, true);
//Publishers and Subscribers
//--------------------------
odom_pub = pn.advertise<nav_msgs::Odometry>(odom_topic, 5);
laser_sub = n.subscribe<sensor_msgs::LaserScan>(laser_scan_topic,1,&CLaserOdometry2D::LaserCallBack,this);
//init pose??
if (init_pose_from_topic != "")
{
initPose_sub = n.subscribe<nav_msgs::Odometry>(init_pose_from_topic,1,&CLaserOdometry2D::initPoseCallBack,this);
GT_pose_initialized = false;
}
else
{
GT_pose_initialized = true;
initial_robot_pose.pose.pose.position.x = 0;
initial_robot_pose.pose.pose.position.y = 0;
initial_robot_pose.pose.pose.position.z = 0;
initial_robot_pose.pose.pose.orientation.w = 0;
initial_robot_pose.pose.pose.orientation.x = 0;
initial_robot_pose.pose.pose.orientation.y = 0;
initial_robot_pose.pose.pose.orientation.z = 0;
}
//Init variables
module_initialized = false;
first_laser_scan = true;
{
//
}
CLaserOdometry2D::~CLaserOdometry2D()
{
//
}
void CLaserOdometry2D::setLaserPose(const tf::Transform& laser_pose)
{
//Set laser pose on the robot
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
const tf::Vector3 &t = laser_pose.getOrigin();
laser_pose_on_robot.x() = t[0];
laser_pose_on_robot.y() = t[1];
laser_pose_on_robot.z() = t[2];
const tf::Matrix3x3 &basis = laser_pose.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
laser_pose_on_robot.setRotationMatrix(R);
laser_pose_on_robot_inv = laser_pose_on_robot;
laser_pose_on_robot_inv.inverse();
}
bool CLaserOdometry2D::is_initialized()
{
return module_initialized;
}
bool CLaserOdometry2D::scan_available()
{
return new_scan_available;
}
void CLaserOdometry2D::Init()
void CLaserOdometry2D::Init(const sensor_msgs::LaserScan& scan,
const geometry_msgs::Pose& initial_robot_pose)
{
//Got an initial scan laser, obtain its parametes
if (verbose)
ROS_INFO("[rf2o] Got first Laser Scan .... Configuring node");
width = last_scan.ranges.size(); // Num of samples (size) of the scan laser
cols = width; // Max reolution. Should be similar to the width parameter
fovh = fabs(last_scan.angle_max - last_scan.angle_min); // Horizontal Laser's FOV
fovh = fabs(scan.angle_max - scan.angle_min); // Horizontal Laser's FOV
ctf_levels = 5; // Coarse-to-Fine levels
iter_irls = 5; //Num iterations to solve iterative reweighted least squares
//Set laser pose on the robot (through tF)
// This allow estimation of the odometry with respect to the robot base reference system.
mrpt::poses::CPose3D LaserPoseOnTheRobot;
tf::StampedTransform transform;
try
{
tf_listener.lookupTransform(base_frame_id, last_scan.header.frame_id, ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
}
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
const tf::Vector3 &t = transform.getOrigin();
LaserPoseOnTheRobot.x() = t[0];
LaserPoseOnTheRobot.y() = t[1];
LaserPoseOnTheRobot.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
LaserPoseOnTheRobot.setRotationMatrix(R);
//Robot initial pose (see MQTT:bridge)
mrpt::poses::CPose3D robotInitialPose;
geometry_msgs::Pose _src = initial_robot_pose.pose.pose;
geometry_msgs::Pose _src = initial_robot_pose;
robotInitialPose.x(_src.position.x);
robotInitialPose.y(_src.position.y);
@@ -141,13 +92,10 @@ void CLaserOdometry2D::Init()
robotInitialPose.setYawPitchRoll(yaw,pitch,roll);
//robotInitialPose.phi(yaw);
//Set the initial pose
laser_pose = robotInitialPose + LaserPoseOnTheRobot;
laser_oldpose = robotInitialPose + LaserPoseOnTheRobot;
// Init module (internal)
//------------------------
range_wf.setSize(1, width);
@@ -227,12 +175,16 @@ void CLaserOdometry2D::Init()
}
void CLaserOdometry2D::odometryCalculation()
void CLaserOdometry2D::odometryCalculation(const sensor_msgs::LaserScan& scan)
{
//==================================================================================
// DIFERENTIAL ODOMETRY MULTILEVEL
//==================================================================================
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = scan.ranges[i];
m_clock.Tic();
createImagePyramid();
@@ -289,14 +241,13 @@ void CLaserOdometry2D::odometryCalculation()
//Update poses
PoseUpdate();
new_scan_available = false; //avoids the possibility to run twice on the same laser scan
}
void CLaserOdometry2D::createImagePyramid()
{
const float max_range_dif = 0.3f;
//Push the frames back
range_old.swap(range);
xx_old.swap(xx);
@@ -312,21 +263,21 @@ void CLaserOdometry2D::createImagePyramid()
{
unsigned int s = pow(2.f,int(i));
cols_i = ceil(float(width)/float(s));
const unsigned int i_1 = i-1;
//First level -> Filter (not downsampling);
if (i == 0)
{
for (unsigned int u = 0; u < cols_i; u++)
{
{
const float dcenter = range_wf(u);
//Inner pixels
if ((u>1)&&(u<cols_i-2))
{
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
@@ -351,16 +302,16 @@ void CLaserOdometry2D::createImagePyramid()
else
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
for (int l=-2; l<3; l++)
for (int l=-2; l<3; l++)
{
const int indu = u+l;
if ((indu>=0)&&(indu<cols_i))
{
const float abs_dif = abs(range_wf(indu)-dcenter);
const float abs_dif = abs(range_wf(indu)-dcenter);
if (abs_dif < max_range_dif)
{
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -381,17 +332,17 @@ void CLaserOdometry2D::createImagePyramid()
// Downsampling
//-----------------------------------------------------------------------------
else
{
{
for (unsigned int u = 0; u < cols_i; u++)
{
const int u2 = 2*u;
const int u2 = 2*u;
const float dcenter = range[i_1](u2);
//Inner pixels
if ((u>0)&&(u<cols_i-1))
{
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
@@ -416,18 +367,18 @@ void CLaserOdometry2D::createImagePyramid()
else
{
if (dcenter > 0.f)
{
{
float sum = 0.f;
float weight = 0.f;
const unsigned int cols_i2 = range[i_1].cols();
for (int l=-2; l<3; l++)
for (int l=-2; l<3; l++)
{
const int indu = u2+l;
if ((indu>=0)&&(indu<cols_i2))
{
const float abs_dif = abs(range[i_1](indu)-dcenter);
const float abs_dif = abs(range[i_1](indu)-dcenter);
if (abs_dif < max_range_dif)
{
const float aux_w = g_mask[2+l]*(max_range_dif - abs_dif);
@@ -446,7 +397,7 @@ void CLaserOdometry2D::createImagePyramid()
}
//Calculate coordinates "xy" of the points
for (unsigned int u = 0; u < cols_i; u++)
for (unsigned int u = 0; u < cols_i; u++)
{
if (range[i](u) > 0.f)
{
@@ -466,7 +417,7 @@ void CLaserOdometry2D::createImagePyramid()
void CLaserOdometry2D::calculateCoord()
{
{
for (unsigned int u = 0; u < cols_i; u++)
{
if ((range_old[image_level](u) == 0.f) || (range_warped[image_level](u) == 0.f))
@@ -486,12 +437,12 @@ void CLaserOdometry2D::calculateCoord()
void CLaserOdometry2D::calculaterangeDerivativesSurface()
{
{
//The gradient size ir reserved at the maximum size (at the constructor)
//Compute connectivity
rtita.resize(1,cols_i); //Defined in a different way now, without inversion
rtita.assign(1.f);
rtita.assign(1.f);
for (unsigned int u = 0; u < cols_i-1; u++)
{
@@ -569,15 +520,15 @@ void CLaserOdometry2D::computeWeights()
{
//The maximum weight size is reserved at the constructor
weights.assign(0.f);
//Parameters for error_linearization
const float kdtita = 1.f;
const float kdt = kdtita/square(fps);
const float k2d = 0.2f;
for (unsigned int u = 1; u < cols_i-1; u++)
if (null(u) == 0)
{
{
// Compute derivatives
//-----------------------------------------------------------------------
const float ini_dtita = range_old[image_level](u+1) - range_old[image_level](u-1);
@@ -640,7 +591,7 @@ void CLaserOdometry2D::solveSystemOneLevel()
cont++;
}
//Solve the linear system of equations using a minimum least squares method
MatrixXf AtA, AtB;
AtA.multiply_AtA(A);
@@ -767,7 +718,7 @@ void CLaserOdometry2D::Reset(CPose3D ini_pose, CObservation2DRangeScan scan)
void CLaserOdometry2D::performWarping()
{
Matrix3f acu_trans;
Matrix3f acu_trans;
acu_trans.setIdentity();
for (unsigned int i=1; i<=level; i++)
acu_trans = transformations[i-1]*acu_trans;
@@ -780,7 +731,7 @@ void CLaserOdometry2D::performWarping()
const float kdtita = cols_lim/fovh;
for (unsigned int j = 0; j<cols_i; j++)
{
{
if (range[image_level](j) > 0.f)
{
//Transform point to the warped reference frame
@@ -822,7 +773,7 @@ void CLaserOdometry2D::performWarping()
//Scale the averaged range and compute coordinates
for (unsigned int u = 0; u<cols_i; u++)
{
{
if (wacu(u) > 0.f)
{
const float tita = -0.5f*fovh + float(u)/kdtita;
@@ -848,13 +799,13 @@ void CLaserOdometry2D::filterLevelSolution()
// Calculate Eigenvalues and Eigenvectors
//----------------------------------------------------------
SelfAdjointEigenSolver<MatrixXf> eigensolver(cov_odo);
if (eigensolver.info() != Success)
if (eigensolver.info() != Success)
{
if (verbose)
printf("[rf2o] ERROR: Eigensolver couldn't find a solution. Pose is not updated");
return;
}
//First, we have to describe both the new linear and angular speeds in the "eigenvector" basis
//-------------------------------------------------------------------------------------------------
Matrix<float,3,3> Bii;
@@ -958,52 +909,25 @@ void CLaserOdometry2D::PoseUpdate()
ROS_INFO("[rf2o] LASERodom = [%f %f %f]",laser_pose.x(),laser_pose.y(),laser_pose.yaw());
// GET ROBOT POSE from LASER POSE
//------------------------------
mrpt::poses::CPose3D LaserPoseOnTheRobot_inv;
tf::StampedTransform transform;
try
{
tf_listener.lookupTransform(last_scan.header.frame_id, base_frame_id, ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
}
//TF:transform -> mrpt::CPose3D (see mrpt-ros-bridge)
const tf::Vector3 &t = transform.getOrigin();
LaserPoseOnTheRobot_inv.x() = t[0];
LaserPoseOnTheRobot_inv.y() = t[1];
LaserPoseOnTheRobot_inv.z() = t[2];
const tf::Matrix3x3 &basis = transform.getBasis();
mrpt::math::CMatrixDouble33 R;
for(int r = 0; r < 3; r++)
for(int c = 0; c < 3; c++)
R(r,c) = basis[r][c];
LaserPoseOnTheRobot_inv.setRotationMatrix(R);
//Compose Transformations
robot_pose = laser_pose + LaserPoseOnTheRobot_inv;
if (verbose)
ROS_INFO("BASEodom = [%f %f %f]",robot_pose.x(),robot_pose.y(),robot_pose.yaw());
// Estimate linear/angular speeds (mandatory for base_local_planner)
// last_scan -> the last scan received
// last_odom_time -> The time of the previous scan lasser used to estimate the pose
//-------------------------------------------------------------------------------------
double time_inc_sec = (last_scan.header.stamp - last_odom_time).toSec();
last_odom_time = last_scan.header.stamp;
double lin_speed = acu_trans(0,2) / time_inc_sec;
double time_inc_sec = (current_scan_time - last_odom_time).toSec();
last_odom_time = current_scan_time;
lin_speed = acu_trans(0,2) / time_inc_sec;
//double lin_speed = sqrt( square(robot_oldpose.x()-robot_pose.x()) + square(robot_oldpose.y()-robot_pose.y()) )/time_inc_sec;
double ang_inc = robot_pose.yaw() - robot_oldpose.yaw();
if (ang_inc > 3.14159)
ang_inc -= 2*3.14159;
if (ang_inc < -3.14159)
ang_inc += 2*3.14159;
double ang_speed = ang_inc/time_inc_sec;
ang_speed = ang_inc/time_inc_sec;
robot_oldpose = robot_pose;
//filter speeds
@@ -1020,112 +944,4 @@ void CLaserOdometry2D::PoseUpdate()
double sum2 = std::accumulate(last_m_ang_speeds.begin(), last_m_ang_speeds.end(), 0.0);
ang_speed = sum2 / last_m_ang_speeds.size();
*/
//first, we'll publish the odometry over tf
//---------------------------------------
if (publish_tf)
{
//ROS_INFO("[rf2o] Publishing TF: [base_link] to [odom]");
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.stamp = ros::Time::now();
odom_trans.header.frame_id = odom_frame_id;
odom_trans.child_frame_id = base_frame_id;
odom_trans.transform.translation.x = robot_pose.x();
odom_trans.transform.translation.y = robot_pose.y();
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//send the transform
odom_broadcaster.sendTransform(odom_trans);
}
//next, we'll publish the odometry message over ROS
//-------------------------------------------------
//ROS_INFO("[rf2o] Publishing Odom Topic");
nav_msgs::Odometry odom;
odom.header.stamp = ros::Time::now();
odom.header.frame_id = odom_frame_id;
//set the position
odom.pose.pose.position.x = robot_pose.x();
odom.pose.pose.position.y = robot_pose.y();
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//set the velocity
odom.child_frame_id = base_frame_id;
odom.twist.twist.linear.x = lin_speed; //linear speed
odom.twist.twist.linear.y = 0.0;
odom.twist.twist.angular.z = ang_speed; //angular speed
//publish the message
odom_pub.publish(odom);
}
//-----------------------------------------------------------------------------------
// CALLBACKS
//-----------------------------------------------------------------------------------
void CLaserOdometry2D::LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan)
{
if (GT_pose_initialized)
{
//Keep in memory the last received laser_scan
last_scan = *new_scan;
//Initialize module on first scan
if (first_laser_scan)
{
Init();
first_laser_scan = false;
}
else
{
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = new_scan->ranges[i];
new_scan_available = true;
}
}
}
void CLaserOdometry2D::initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose)
{
//Initialize module on first GT pose. Else do Nothing!
if (!GT_pose_initialized)
{
initial_robot_pose = *new_initPose;
GT_pose_initialized = true;
}
}
//-----------------------------------------------------------------------------------
// MAIN
//-----------------------------------------------------------------------------------
int main(int argc, char** argv)
{
ros::init(argc, argv, "RF2O_LaserOdom");
CLaserOdometry2D myLaserOdom;
//Main Loop
//----------
ROS_INFO("[rf2o] initialization complete...Looping");
ros::Rate loop_rate(myLaserOdom.freq);
while (ros::ok())
{
ros::spinOnce(); //Check for new laser scans
if( myLaserOdom.is_initialized() && myLaserOdom.scan_available() )
{
//Process odometry estimation
myLaserOdom.odometryCalculation();
}
else
{
ROS_WARN("[rf2o] Waiting for laser_scans....") ;
}
loop_rate.sleep();
}
return(0);
}

View File

@@ -0,0 +1,261 @@
/** ****************************************************************************************
* This node presents a fast and precise method to estimate the planar motion of a lidar
* from consecutive range scans. It is very useful for the estimation of the robot odometry from
* 2D laser range measurements.
* This module is developed for mobile robots with innacurate or inexistent built-in odometry.
* It allows the estimation of a precise odometry with low computational cost.
* For more information, please refer to:
*
* Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach. ICRA'16.
* Available at: http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/217
*
* Maintainer: Javier G. Monroy
* MAPIR group: http://mapir.isa.uma.es/
******************************************************************************************** */
#include "rf2o_laser_odometry/CLaserOdometry2D.h"
using namespace mrpt;
using namespace mrpt::math;
using namespace mrpt::utils;
using namespace mrpt::poses;
using namespace std;
using namespace Eigen;
class CLaserOdometry2DNode : CLaserOdometry2D
{
public:
CLaserOdometry2DNode();
~CLaserOdometry2DNode();
void process();
void publish();
public:
bool verbose,publish_tf,new_scan_available;
double freq;
std::string laser_scan_topic;
std::string odom_topic;
std::string base_frame_id;
std::string odom_frame_id;
std::string init_pose_from_topic;
ros::NodeHandle n;
sensor_msgs::LaserScan last_scan;
bool GT_pose_initialized;
tf::TransformListener tf_listener; //Do not put inside the callback
tf::TransformBroadcaster odom_broadcaster;
nav_msgs::Odometry initial_robot_pose;
//Subscriptions & Publishers
ros::Subscriber laser_sub, initPose_sub;
ros::Publisher odom_pub;
bool scan_available();
//CallBacks
void LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan);
void initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose);
};
CLaserOdometry2DNode::CLaserOdometry2DNode() :
CLaserOdometry2D()
{
ROS_INFO("Initializing RF2O node...");
//Read Parameters
//----------------
ros::NodeHandle pn("~");
pn.param<std::string>("laser_scan_topic",laser_scan_topic,"/laser_scan");
pn.param<std::string>("odom_topic", odom_topic, "/odom_rf2o");
pn.param<std::string>("base_frame_id", base_frame_id, "/base_link");
pn.param<std::string>("odom_frame_id", odom_frame_id, "/odom");
pn.param<bool>("publish_tf", publish_tf, true);
pn.param<std::string>("init_pose_from_topic", init_pose_from_topic, "/base_pose_ground_truth");
pn.param<double>("freq",freq,10.0);
pn.param<bool>("verbose", verbose, true);
//Publishers and Subscribers
//--------------------------
odom_pub = pn.advertise<nav_msgs::Odometry>(odom_topic, 5);
laser_sub = n.subscribe<sensor_msgs::LaserScan>(laser_scan_topic,1,&CLaserOdometry2DNode::LaserCallBack,this);
//init pose??
if (init_pose_from_topic != "")
{
initPose_sub = n.subscribe<nav_msgs::Odometry>(init_pose_from_topic,1,&CLaserOdometry2DNode::initPoseCallBack,this);
GT_pose_initialized = false;
}
else
{
GT_pose_initialized = true;
initial_robot_pose.pose.pose.position.x = 0;
initial_robot_pose.pose.pose.position.y = 0;
initial_robot_pose.pose.pose.position.z = 0;
initial_robot_pose.pose.pose.orientation.w = 0;
initial_robot_pose.pose.pose.orientation.x = 0;
initial_robot_pose.pose.pose.orientation.y = 0;
initial_robot_pose.pose.pose.orientation.z = 0;
}
// Set laser pose on the robot (through tF)
// This allow estimation of the odometry with respect to the robot base reference system.
tf::StampedTransform transform;
transform.setIdentity();
try
{
tf_listener.lookupTransform(base_frame_id, last_scan.header.frame_id, ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
}
setLaserPose(transform);
//Init variables
module_initialized = false;
first_laser_scan = true;
}
CLaserOdometry2DNode::~CLaserOdometry2DNode()
{
//
}
bool CLaserOdometry2DNode::scan_available()
{
return new_scan_available;
}
void CLaserOdometry2DNode::process()
{
if( is_initialized() && scan_available() )
{
//Process odometry estimation
odometryCalculation(last_scan);
publish();
new_scan_available = false; //avoids the possibility to run twice on the same laser scan
}
else
{
ROS_WARN("Waiting for laser_scans....") ;
}
}
//-----------------------------------------------------------------------------------
// CALLBACKS
//-----------------------------------------------------------------------------------
void CLaserOdometry2DNode::LaserCallBack(const sensor_msgs::LaserScan::ConstPtr& new_scan)
{
if (GT_pose_initialized)
{
//Keep in memory the last received laser_scan
last_scan = *new_scan;
current_scan_time = last_scan.header.stamp;
//Initialize module on first scan
if (first_laser_scan)
{
Init(last_scan, initial_robot_pose.pose.pose);
first_laser_scan = false;
}
else
{
//copy laser scan to internal variable
for (unsigned int i = 0; i<width; i++)
range_wf(i) = new_scan->ranges[i];
new_scan_available = true;
}
}
}
void CLaserOdometry2DNode::initPoseCallBack(const nav_msgs::Odometry::ConstPtr& new_initPose)
{
//Initialize module on first GT pose. Else do Nothing!
if (!GT_pose_initialized)
{
initial_robot_pose = *new_initPose;
GT_pose_initialized = true;
}
}
void CLaserOdometry2DNode::publish()
{
//first, we'll publish the odometry over tf
//---------------------------------------
if (publish_tf)
{
//ROS_INFO("[rf2o] Publishing TF: [base_link] to [odom]");
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.stamp = ros::Time::now();
odom_trans.header.frame_id = odom_frame_id;
odom_trans.child_frame_id = base_frame_id;
odom_trans.transform.translation.x = robot_pose.x();
odom_trans.transform.translation.y = robot_pose.y();
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//send the transform
odom_broadcaster.sendTransform(odom_trans);
}
//next, we'll publish the odometry message over ROS
//-------------------------------------------------
//ROS_INFO("[rf2o] Publishing Odom Topic");
nav_msgs::Odometry odom;
odom.header.stamp = ros::Time::now();
odom.header.frame_id = odom_frame_id;
//set the position
odom.pose.pose.position.x = robot_pose.x();
odom.pose.pose.position.y = robot_pose.y();
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = tf::createQuaternionMsgFromYaw(robot_pose.yaw());
//set the velocity
odom.child_frame_id = base_frame_id;
odom.twist.twist.linear.x = lin_speed; //linear speed
odom.twist.twist.linear.y = 0.0;
odom.twist.twist.angular.z = ang_speed; //angular speed
//publish the message
odom_pub.publish(odom);
}
//void CLaserOdometry2D::Reset(CPose3D ini_pose, CObservation2DRangeScan scan)
//{
// //Set the initial pose
// laser_pose = ini_pose;
// laser_oldpose = ini_pose;
// //readLaser(scan);
// createImagePyramid();
// //readLaser(scan);
// createImagePyramid();
//}
//-----------------------------------------------------------------------------------
// MAIN
//-----------------------------------------------------------------------------------
int main(int argc, char** argv)
{
ros::init(argc, argv, "RF2O_LaserOdom");
CLaserOdometry2DNode myLaserOdomNode;
//Main Loop
//----------
ROS_INFO("initialization complete...Looping");
ros::Rate loop_rate(myLaserOdomNode.freq);
while (ros::ok())
{
ros::spinOnce(); //Check for new laser scans
myLaserOdomNode.process();
loop_rate.sleep();
}
return(0);
}