Refactor transform fusion to individual module

This commit is contained in:
HViktorTsoi
2021-08-06 14:34:31 +08:00
parent 1364cc8416
commit 636b57bc5b
2 changed files with 141 additions and 57 deletions

View File

@@ -39,53 +39,31 @@ def msg_to_array(pc_msg):
return pc
def transform_fusion():
br = tf.TransformBroadcaster()
while True:
time.sleep(1 / FREQ_PUB_LOCALIZATION)
br.sendTransform(tf.transformations.translation_from_matrix(T_map_to_odom),
tf.transformations.quaternion_from_matrix(T_map_to_odom),
rospy.Time.now(),
'camera_init', 'map')
if cur_odom is not None:
# 发布全局定位的odometry
localization = Odometry()
T_odom_to_base_link = pose_to_mat(cur_odom)
T_map_to_base_link = np.matmul(T_map_to_odom, T_odom_to_base_link)
xyz = tf.transformations.translation_from_matrix(T_map_to_base_link)
quat = tf.transformations.quaternion_from_matrix(T_map_to_base_link)
localization.pose.pose = Pose(Point(*xyz), Quaternion(*quat))
localization.twist = cur_odom.twist
localization.header.stamp = cur_odom.header.stamp
localization.header.frame_id = 'map'
localization.child_frame_id = 'body'
# rospy.loginfo_throttle(1, '{}'.format(np.matmul(T_map_to_odom, T_odom_to_base_link)))
pub_localization.publish(localization)
def registration_at_scale(pc_scan, pc_map, initial, scale):
sor = pc_scan.make_voxel_grid_filter()
sor.set_leaf_size(SCAN_VOXEL_SIZE * scale, SCAN_VOXEL_SIZE * scale, SCAN_VOXEL_SIZE * scale)
try:
sor = pc_scan.make_voxel_grid_filter()
sor.set_leaf_size(SCAN_VOXEL_SIZE * scale, SCAN_VOXEL_SIZE * scale, SCAN_VOXEL_SIZE * scale)
# 用初始解转换到对应坐标系
pc = np.array(sor.filter())
pc = np.column_stack([pc, np.ones(len(pc)).reshape(-1, 1)])
pc_in_map = (np.matmul(initial, pc.T)).T
scan_tobe_mapped = pcl.PointCloud()
scan_tobe_mapped.from_array(pc_in_map[:, :3].astype(np.float32))
# 用初始解转换到对应坐标系
pc = np.array(sor.filter())
pc = np.column_stack([pc, np.ones(pc.shape[0]).reshape(-1, 1)])
pc_in_map = (np.matmul(initial, pc.T)).T
scan_tobe_mapped = pcl.PointCloud()
scan_tobe_mapped.from_array(pc_in_map[:, :3].astype(np.float32))
# 对地图降采样
sor = pc_map.make_voxel_grid_filter()
sor.set_leaf_size(MAP_VOXEL_SIZE * scale, MAP_VOXEL_SIZE * scale, MAP_VOXEL_SIZE * scale)
map_down = sor.filter()
# 对地图降采样
sor = pc_map.make_voxel_grid_filter()
sor.set_leaf_size(MAP_VOXEL_SIZE * scale, MAP_VOXEL_SIZE * scale, MAP_VOXEL_SIZE * scale)
map_down = sor.filter()
icp = map_down.make_IterativeClosestPoint()
converged, transformation, estimate, fitness = \
icp.icp(scan_tobe_mapped, map_down, max_iter=10)
# 这里要将初始解进行变换, 因为icp估计的是精确位置到初始解的delta
return np.matmul(transformation, initial), fitness
icp = map_down.make_IterativeClosestPoint()
converged, transformation, estimate, fitness = \
icp.icp(scan_tobe_mapped, map_down, max_iter=10)
# 这里要将初始解进行变换, 因为icp估计的是精确位置到初始解的delta
return np.matmul(transformation, initial), fitness
except Exception as e:
rospy.logerr('{}'.format(e))
return initial, 1e9
def inverse_se3(trans):
@@ -128,12 +106,20 @@ def crop_global_map_in_FOV(pose_estimation):
global_map_in_base_link = np.matmul(T_base_link_to_map, global_map_in_map.T).T
# 将视角内的地图点提取出来
# FOV_FAR>x>0 且角度小于FOV
indices = np.where(
(global_map_in_base_link[:, 0] > 0) &
(global_map_in_base_link[:, 0] < FOV_FAR) &
(np.abs(np.arctan2(global_map_in_base_link[:, 1], global_map_in_base_link[:, 0])) < FOV / 2.0)
)
if FOV > 3.14:
# 环状lidar 仅过滤距离
indices = np.where(
(global_map_in_base_link[:, 0] < FOV_FAR) &
(np.abs(np.arctan2(global_map_in_base_link[:, 1], global_map_in_base_link[:, 0])) < FOV / 2.0)
)
else:
# 非环状lidar 保前视范围
# FOV_FAR>x>0 且角度小于FOV
indices = np.where(
(global_map_in_base_link[:, 0] > 0) &
(global_map_in_base_link[:, 0] < FOV_FAR) &
(np.abs(np.arctan2(global_map_in_base_link[:, 1], global_map_in_base_link[:, 0])) < FOV / 2.0)
)
global_map_in_FOV = pcl.PointCloud()
global_map_in_FOV.from_array(np.squeeze(global_map_in_map[indices, :3]).astype(np.float32))
@@ -146,7 +132,7 @@ def crop_global_map_in_FOV(pose_estimation):
def global_localization(pose_estimation):
global global_map, cur_scan, T_map_to_odom
global global_map, cur_scan, cur_odom, T_map_to_odom
# 用icp配准
# print(global_map, cur_scan, T_map_to_odom)
rospy.loginfo('Global localization by scan-to-map matching......')
@@ -172,6 +158,15 @@ def global_localization(pose_estimation):
if fitness < LOCALIZATION_TH:
# T_map_to_odom = np.matmul(transformation, pose_estimation)
T_map_to_odom = transformation
# 发布map_to_odom
map_to_odom = Odometry()
xyz = tf.transformations.translation_from_matrix(T_map_to_odom)
quat = tf.transformations.quaternion_from_matrix(T_map_to_odom)
map_to_odom.pose.pose = Pose(Point(*xyz), Quaternion(*quat))
map_to_odom.header.stamp = cur_odom.header.stamp
map_to_odom.header.frame_id = 'map'
pub_map_to_odom.publish(map_to_odom)
return True
else:
rospy.logwarn('Not match!!!!')
@@ -244,24 +239,21 @@ if __name__ == '__main__':
rospy.init_node('fast_lio_localization')
rospy.loginfo('Localization Node Inited...')
# 发布定位消息
thread.start_new_thread(transform_fusion, ())
# publisher
pub_pc_in_map = rospy.Publisher('/cur_scan_in_map', PointCloud2, queue_size=1)
pub_submap = rospy.Publisher('/submap', PointCloud2, queue_size=1)
pub_localization = rospy.Publisher('/localization', Odometry, queue_size=1)
pub_map_to_odom = rospy.Publisher('/map_to_odom', Odometry, queue_size=1)
rospy.Subscriber('/cloud_registered', PointCloud2, cb_save_cur_scan, queue_size=1)
rospy.Subscriber('/Odometry', Odometry, cb_save_cur_odom, queue_size=1)
# 初始化全局地图
rospy.loginfo('Waiting for global map......')
rospy.logwarn('Waiting for global map......')
initialize_global_map(rospy.wait_for_message('/map', PointCloud2))
# 初始化
while not initialized:
rospy.loginfo('Waiting for initial pose....')
rospy.logwarn('Waiting for initial pose....')
# 等待初始位姿
pose_msg = rospy.wait_for_message('/initialpose', PoseWithCovarianceStamped)
@@ -271,9 +263,10 @@ if __name__ == '__main__':
else:
rospy.logwarn('First scan not received!!!!!')
rospy.loginfo('')
rospy.loginfo('Initialize successfully!!!!!!')
rospy.loginfo('')
# 开始定期全局定位
thread.start_new_thread(thread_localization, ())
# multiprocessing.Process(target=thread_localization, args=()).start()
rospy.spin()

91
scripts/transform_fusion.py Executable file
View File

@@ -0,0 +1,91 @@
#!/usr/bin/env python2
# coding=utf8
from __future__ import print_function, division, absolute_import
import copy
import thread
import time
import pcl
import rospy
import ros_numpy
from geometry_msgs.msg import PoseWithCovarianceStamped, Pose, Point, Quaternion
from nav_msgs.msg import Odometry
from sensor_msgs.msg import PointCloud2
import numpy as np
import tf
import tf.transformations
cur_odom_to_baselink = None
cur_map_to_odom = None
def pose_to_mat(pose_msg):
return np.matmul(
tf.listener.xyz_to_mat44(pose_msg.pose.pose.position),
tf.listener.xyzw_to_mat44(pose_msg.pose.pose.orientation),
)
def transform_fusion():
global cur_odom_to_baselink, cur_map_to_odom
br = tf.TransformBroadcaster()
while True:
time.sleep(1 / FREQ_PUB_LOCALIZATION)
# TODO 这里注意线程安全
cur_odom = copy.copy(cur_odom_to_baselink)
if cur_map_to_odom is not None:
T_map_to_odom = pose_to_mat(cur_map_to_odom)
else:
T_map_to_odom = np.eye(4)
br.sendTransform(tf.transformations.translation_from_matrix(T_map_to_odom),
tf.transformations.quaternion_from_matrix(T_map_to_odom),
rospy.Time.now(),
'camera_init', 'map')
if cur_odom is not None:
# 发布全局定位的odometry
localization = Odometry()
T_odom_to_base_link = pose_to_mat(cur_odom)
# 这里T_map_to_odom短时间内变化缓慢 暂时不考虑与T_odom_to_base_link时间同步
T_map_to_base_link = np.matmul(T_map_to_odom, T_odom_to_base_link)
xyz = tf.transformations.translation_from_matrix(T_map_to_base_link)
quat = tf.transformations.quaternion_from_matrix(T_map_to_base_link)
localization.pose.pose = Pose(Point(*xyz), Quaternion(*quat))
localization.twist = cur_odom.twist
localization.header.stamp = cur_odom.header.stamp
localization.header.frame_id = 'map'
localization.child_frame_id = 'body'
# rospy.loginfo_throttle(1, '{}'.format(np.matmul(T_map_to_odom, T_odom_to_base_link)))
pub_localization.publish(localization)
def cb_save_cur_odom(odom_msg):
global cur_odom_to_baselink
cur_odom_to_baselink = odom_msg
def cb_save_map_to_odom(odom_msg):
global cur_map_to_odom
cur_map_to_odom = odom_msg
if __name__ == '__main__':
# tf and localization publishing frequency (HZ)
FREQ_PUB_LOCALIZATION = 50
rospy.init_node('transform_fusion')
rospy.loginfo('Transform Fusion Node Inited...')
rospy.Subscriber('/Odometry', Odometry, cb_save_cur_odom, queue_size=1)
rospy.Subscriber('/map_to_odom', Odometry, cb_save_map_to_odom, queue_size=1)
pub_localization = rospy.Publisher('/localization', Odometry, queue_size=1)
# 发布定位消息
thread.start_new_thread(transform_fusion, ())
rospy.spin()