saved work on protocol v2 for tracer

This commit is contained in:
Ruixiang Du
2020-11-05 19:12:51 +08:00
parent 27ba46a450
commit 87cd3665aa
14 changed files with 752 additions and 2464 deletions

View File

@@ -90,7 +90,7 @@ add_library(${PROJECT_NAME}
# src/scout_base.cpp
# src/scout_can_parser.c
# src/scout_uart_parser.c
# src/tracer_base.cpp
src/tracer_base.cpp
# src/tracer_can_parser.c
# src/tracer_uart_parser.c
# src/bunker_base.cpp
@@ -119,7 +119,7 @@ if(BUILD_WITHOUT_ROS)
endif()
# add app source directory
# add_subdirectory(apps)
add_subdirectory(apps)
endif()
# Build tests

View File

@@ -2,17 +2,17 @@
#find_package(LIBRARY_NAME REQUIRED)
# tests
add_executable(app_scout_demo scout_demo/scout_demo.cpp)
target_link_libraries(app_scout_demo ugv_sdk)
# add_executable(app_scout_demo scout_demo/scout_demo.cpp)
# target_link_libraries(app_scout_demo ugv_sdk)
# add_executable(app_scout_discharge scout_demo/scout_discharge.cpp)
# target_link_libraries(app_scout_discharge ugv_sdk)
add_executable(app_hunter_demo hunter_demo/hunter_demo.cpp)
target_link_libraries(app_hunter_demo ugv_sdk)
# add_executable(app_hunter_demo hunter_demo/hunter_demo.cpp)
# target_link_libraries(app_hunter_demo ugv_sdk)
# add_executable(app_tracer_demo tracer_demo/tracer_demo.cpp)
# target_link_libraries(app_tracer_demo ugv_sdk)
add_executable(app_tracer_demo tracer_demo/tracer_demo.cpp)
target_link_libraries(app_tracer_demo ugv_sdk)
# if(BUILD_MONITOR)
# add_subdirectory(scout_monitor)

View File

@@ -7,22 +7,18 @@
* Copyright (c) 2019 Ruixiang Du (rdu)
*/
#include "tracer_base/tracer_base.hpp"
#include "ugv_sdk/tracer/tracer_base.hpp"
using namespace westonrobot;
int main(int argc, char **argv)
{
int main(int argc, char **argv) {
std::string device_name;
int32_t baud_rate = 0;
if (argc == 2)
{
if (argc == 2) {
device_name = {argv[1]};
std::cout << "Specified CAN: " << device_name << std::endl;
}
else
{
} else {
std::cout << "Usage: app_tracer_demo <interface>" << std::endl
<< "Example 1: ./app_tracer_demo can0" << std::endl;
return -1;
@@ -31,73 +27,66 @@ int main(int argc, char **argv)
TracerBase tracer;
tracer.Connect(device_name);
tracer.EnableCommandedMode();
// light control
std::cout << "Light: const off" << std::endl;
tracer.SetLightCommand({TracerLightCmd::LightMode::CONST_OFF, 0, TracerLightCmd::LightMode::CONST_OFF, 0});
sleep(3);
tracer.SetLightCommand({TracerLightCmd::LightMode::CONST_OFF, 0,
TracerLightCmd::LightMode::CONST_OFF, 0});
sleep(5);
std::cout << "Light: const on" << std::endl;
tracer.SetLightCommand({TracerLightCmd::LightMode::CONST_ON, 0, TracerLightCmd::LightMode::CONST_ON, 0});
tracer.SetLightCommand({TracerLightCmd::LightMode::CONST_ON, 0,
TracerLightCmd::LightMode::CONST_ON, 0});
sleep(3);
std::cout << "Light: breath" << std::endl;
tracer.SetLightCommand({TracerLightCmd::LightMode::BREATH, 0, TracerLightCmd::LightMode::BREATH, 0});
tracer.SetLightCommand({TracerLightCmd::LightMode::BREATH, 0,
TracerLightCmd::LightMode::BREATH, 0});
sleep(3);
std::cout << "Light: custom 90-80" << std::endl;
tracer.SetLightCommand({TracerLightCmd::LightMode::CUSTOM, 90, TracerLightCmd::LightMode::CUSTOM, 80});
tracer.SetLightCommand({TracerLightCmd::LightMode::CUSTOM, 90,
TracerLightCmd::LightMode::CUSTOM, 80});
sleep(3);
std::cout << "Light: diabled cmd control" << std::endl;
tracer.DisableLightCmdControl();
int count = 0;
while (true)
{
// motion control
if (count < 5)
{
std::cout << "Motor: 0.2, 0.0" << std::endl;
tracer.SetMotionCommand(0.2, 0.0);
}
else if (count < 10)
{
std::cout << "Motor: 0.8, 0.3" << std::endl;
tracer.SetMotionCommand(0.8, 0.3);
}
else if (count < 15)
{
std::cout << "Motor: 1.5, 0.5" << std::endl;
tracer.SetMotionCommand(1.5, 0.5);
}
else if (count < 20)
{
std::cout << "Motor: 1.0, 0.3" << std::endl;
tracer.SetMotionCommand(1.0, 0.3);
}
else if (count < 25)
{
std::cout << "Motor: 0.0, 0.0" << std::endl;
tracer.SetMotionCommand(0.0, 0.0);
}
else if (count < 30)
{
std::cout << "Motor: -0.5, -0.3" << std::endl;
tracer.SetMotionCommand(-0.5, -0.3);
}
else if (count < 35)
{
std::cout << "Motor: -1.0, -0.5" << std::endl;
tracer.SetMotionCommand(-1.0, -0.5);
}
else if (count < 40)
{
std::cout << "Motor: 0.0, 0.0," << std::endl;
tracer.SetMotionCommand(0.0, 0.0);
}
while (true) {
// // motion control
// if (count < 5) {
// std::cout << "Motor: 0.2, 0.0" << std::endl;
// tracer.SetMotionCommand(0.2, 0.0);
// } else if (count < 10) {
// std::cout << "Motor: 0.8, 0.3" << std::endl;
// tracer.SetMotionCommand(0.8, 0.3);
// } else if (count < 15) {
// std::cout << "Motor: 1.5, 0.5" << std::endl;
// tracer.SetMotionCommand(1.5, 0.5);
// } else if (count < 20) {
// std::cout << "Motor: 1.0, 0.3" << std::endl;
// tracer.SetMotionCommand(1.0, 0.3);
// } else if (count < 25) {
// std::cout << "Motor: 0.0, 0.0" << std::endl;
// tracer.SetMotionCommand(0.0, 0.0);
// } else if (count < 30) {
// std::cout << "Motor: -0.5, -0.3" << std::endl;
// tracer.SetMotionCommand(-0.5, -0.3);
// } else if (count < 35) {
// std::cout << "Motor: -1.0, -0.5" << std::endl;
// tracer.SetMotionCommand(-1.0, -0.5);
// } else if (count < 40) {
// std::cout << "Motor: 0.0, 0.0," << std::endl;
// tracer.SetMotionCommand(0.0, 0.0);
// }
auto state = tracer.GetTracerState();
std::cout << "-------------------------------" << std::endl;
std::cout << "count: " << count << std::endl;
std::cout << "control mode: " << static_cast<int>(state.control_mode) << " , base state: " << static_cast<int>(state.base_state) << std::endl;
std::cout << "control mode: " << static_cast<int>(state.control_mode)
<< " , base state: " << static_cast<int>(state.base_state)
<< std::endl;
std::cout << "battery voltage: " << state.battery_voltage << std::endl;
std::cout << "velocity (linear, angular): " << state.linear_velocity << ", " << state.angular_velocity << std::endl;
std::cout << "velocity (linear, angular): " << state.linear_velocity << ", "
<< state.angular_velocity << std::endl;
std::cout << "-------------------------------" << std::endl;
sleep(1);

View File

@@ -30,14 +30,48 @@ struct can_frame {
};
#endif
#pragma pack(push, 1)
typedef enum {
AgxMsgUnkonwn = 0x00,
// command
AgxMsgMotionCommand = 0x01,
AgxMsgLightCommand = 0x02,
AgxMsgCtrlModeSelect = 0x03,
AgxMsgFaultByteReset = 0x04,
// state feedback
AgxMsgSystemState = 0x21,
AgxMsgMotionState = 0x22,
AgxMsgLightState = 0x23,
AgxMsgRcState = 0x24,
AgxMsgActuatorHSState = 0x25,
AgxMsgActuatorLSState = 0x26,
AgxMsgOdometry = 0x27
} MsgType;
typedef struct {
MsgType type;
union {
// command
MotionCommandMessage motion_command_msg;
LightCommandMessage light_command_msg;
CtrlModeSelectMessage ctrl_mode_select_msg;
StateResetMessage state_reset_msg;
// state feedback
SystemStateMessage system_state_msg;
MotionStateMessage motion_state_msg;
LightStateMessage light_state_msg;
RcStateMessage rc_state_msg;
ActuatorHSStateMessage actuator_hs_state_msg;
ActuatorLSStateMessage actuator_ls_state_msg;
OdometryMessage odometry_msg;
} body;
} AgxMessage;
#pragma pack(pop)
bool DecodeCanFrame(const struct can_frame *rx_frame, AgxMessage *msg);
void EncodeCanFrame(const AgxMessage *msg, struct can_frame *tx_frame);
uint8_t CalcCanFrameChecksum(uint16_t id, uint8_t *data, uint8_t dlc);
bool DecodeUartData(uint8_t c, AgxMessage *msg);
void EncodeUartData(const AgxMessage *msg, uint8_t *buf, uint8_t *len);
uint8_t CalcUartDataChecksum(uint8_t *buf, uint8_t len);
#ifdef __cplusplus
}
#endif

View File

@@ -10,98 +10,79 @@
#ifndef AGX_PROTOCOL_V2_H
#define AGX_PROTOCOL_V2_H
// #ifdef __cplusplus
// extern "C" {
// #endif
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/*---------------------------- Motor IDs -------------------------------*/
#define SCOUT_MOTOR1_ID ((uint8_t)0x00)
#define SCOUT_MOTOR2_ID ((uint8_t)0x01)
#define SCOUT_MOTOR3_ID ((uint8_t)0x02)
#define SCOUT_MOTOR4_ID ((uint8_t)0x03)
#define HUNTER_MOTOR1_ID ((uint8_t)0x00)
#define HUNTER_MOTOR2_ID ((uint8_t)0x01)
#define HUNTER_MOTOR3_ID ((uint8_t)0x02)
#define TRACER_MOTOR1_ID ((uint8_t)0x00)
#define TRACER_MOTOR2_ID ((uint8_t)0x01)
#define ACTUATOR1_ID ((uint8_t)0x00)
#define ACTUATOR2_ID ((uint8_t)0x01)
#define ACTUATOR3_ID ((uint8_t)0x02)
#define ACTUATOR4_ID ((uint8_t)0x03)
/*--------------------------- Message IDs ------------------------------*/
// CAN Message IDs
#define CAN_MSG_MOTION_COMMAND_ID ((uint32_t)0x111)
#define CAN_MSG_LIGHT_COMMAND_ID ((uint32_t)0x121)
#define CAN_MSG_SYSTEM_STATE_ID ((uint32_t)0x211)
#define CAN_MSG_MOTION_STATE_ID ((uint32_t)0x221)
#define CAN_MSG_LIGHT_STATE_ID ((uint32_t)0x231)
#define CAN_MSG_RC_STATE_ID ((uint32_t)0x241)
#define CAN_MSG_MOTION_CONTROL_CMD_ID ((uint32_t)0x111)
#define CAN_MSG_SELECT_CONTROL_MODE_ID ((uint32_t)0x421)
#define CAN_MSG_LIGHT_CONTROL_CMD_ID ((uint32_t)0x121)
#define CAN_MSG_LIGHT_CONTROL_STATUS_ID ((uint32_t)0x231)
#define CAN_MSG_ACTUATOR1_HS_STATE_ID ((uint32_t)0x251)
#define CAN_MSG_ACTUATOR2_HS_STATE_ID ((uint32_t)0x252)
#define CAN_MSG_ACTUATOR3_HS_STATE_ID ((uint32_t)0x253)
#define CAN_MSG_ACTUATOR4_HS_STATE_ID ((uint32_t)0x254)
#define CAN_MSG_MOTOR1_HEIGHT_DRIVER_STATUS_ID ((uint32_t)0x251)
#define CAN_MSG_MOTOR2_HEIGHT_DRIVER_STATUS_ID ((uint32_t)0x252)
#define CAN_MSG_MOTOR3_HEIGHT_DRIVER_STATUS_ID ((uint32_t)0x253)
#define CAN_MSG_MOTOR4_HEIGHT_DRIVER_STATUS_ID ((uint32_t)0x254)
#define CAN_MSG_MOTOR1_LOW_DRIVER_STATUS_ID ((uint32_t)0x261)
#define CAN_MSG_MOTOR2_LOW_DRIVER_STATUS_ID ((uint32_t)0x262)
#define CAN_MSG_MOTOR3_LOW_DRIVER_STATUS_ID ((uint32_t)0x263)
#define CAN_MSG_MOTOR4_LOW_DRIVER_STATUS_ID ((uint32_t)0x264)
#define CAN_MSG_ODOMETER_ID ((uint32_t)0x311)
#define CAN_MSG_ACTUATOR1_LS_STATE_ID ((uint32_t)0x261)
#define CAN_MSG_ACTUATOR2_LS_STATE_ID ((uint32_t)0x262)
#define CAN_MSG_ACTUATOR3_LS_STATE_ID ((uint32_t)0x263)
#define CAN_MSG_ACTUATOR4_LS_STATE_ID ((uint32_t)0x264)
#define CAN_MSG_ODOMETRY_ID ((uint32_t)0x311)
#define CAN_MSG_CTRL_MODE_SELECT_ID ((uint32_t)0x421)
#define CAN_MSG_STATE_RESET_ID ((uint32_t)0x441)
/*--------------------- Control/State Constants ------------------------*/
// Motion Control
#define CTRL_MODE_RC ((uint8_t)0x00)
#define CTRL_MODE_CMD_CAN ((uint8_t)0x01)
#define CTRL_MODE_CMD_UART ((uint8_t)0x02)
#define FAULT_CLR_NONE ((uint8_t)0x00)
#define FAULT_CLR_BAT_UNDER_VOL ((uint8_t)0x01)
#define FAULT_CLR_BAT_OVER_VOL ((uint8_t)0x02)
#define FAULT_CLR_MOTOR1_COMM ((uint8_t)0x03)
#define FAULT_CLR_MOTOR2_COMM ((uint8_t)0x04)
#define FAULT_CLR_MOTOR3_COMM ((uint8_t)0x05)
#define FAULT_CLR_MOTOR4_COMM ((uint8_t)0x06)
#define FAULT_CLR_MOTOR_DRV_OVERHEAT ((uint8_t)0x07)
#define FAULT_CLR_MOTOR_OVERCURRENT ((uint8_t)0x08)
// Light Control
#define LIGHT_DISABLE_CTRL ((uint8_t)0x00)
#define LIGHT_ENABLE_CTRL ((uint8_t)0x01)
#define LIGHT_MODE_CONST_OFF ((uint8_t)0x00)
#define LIGHT_MODE_CONST_ON ((uint8_t)0x01)
#define LIGHT_MODE_BREATH ((uint8_t)0x02)
#define LIGHT_MODE_CUSTOM ((uint8_t)0x03)
// System State
#define VEHICLE_STATE_NORMAL ((uint8_t)0x00)
#define VEHICLE_STATE_ESTOP ((uint8_t)0x01)
#define VEHICLE_STATE_EXCEPTION ((uint8_t)0x02)
#define SYSTEM_FAULT_BAT_LOW_CRITICAL ((uint8_t)0x01)
#define SYSTEM_FAULT_BAT_LOW_WARNING ((uint8_t)0x02)
#define SYSTEM_FAULT_RC_SIG_LOST ((uint8_t)0x04)
#define SYSTEM_FAULT_BYTE_RESERVED1 ((uint8_t)0x08)
#define SYSTEM_FAULT_BYTE_RESERVED2 ((uint8_t)0x10)
#define SYSTEM_FAULT_BYTE_RESERVED3 ((uint8_t)0x20)
#define SYSTEM_FAULT_BYTE_RESERVED4 ((uint8_t)0x40)
#define SYSTEM_FAULT_BYTE_RESERVED5 ((uint8_t)0x80)
#define FAULT_CLR_ALL ((uint8_t)0x00)
#define FAULT_CLR_MOTOR1_COMM ((uint8_t)0x01)
#define FAULT_CLR_MOTOR2_COMM ((uint8_t)0x02)
#define FAULT_CLR_MOTOR3_COMM ((uint8_t)0x04)
#define FAULT_CLR_MOTOR4_COMM ((uint8_t)0x08)
#define FAULT_BAT_UNDER_VOL_F ((uint16_t)0x0001)
#define FAULT_BAT_OVER_VOL_F ((uint16_t)0x0002)
#define FAULT_MOTOR1_COMM_F ((uint16_t)0x0004)
#define FAULT_MOTOR2_COMM_F ((uint16_t)0x0008)
#define FAULT_MOTOR3_COMM_F ((uint16_t)0x0010)
#define FAULT_MOTOR4_COMM_F ((uint16_t)0x0020)
#define FAULT_MOTOR_DRV_OVERHEAT_F ((uint16_t)0x0040)
#define FAULT_MOTOR_OVERCURRENT_F ((uint16_t)0x0080)
// Motion Control
#define CTRL_MODE_RC ((uint8_t)0x00)
#define CTRL_MODE_CMD_CAN ((uint8_t)0x01)
#define CTRL_MODE_CMD_UART ((uint8_t)0x02)
// Light Control
#define LIGHT_CTRL_DISABLE ((uint8_t)0x00)
#define LIGHT_CTRL_ENABLE ((uint8_t)0x01)
#define LIGHT_MODE_CONST_OFF ((uint8_t)0x00)
#define LIGHT_MODE_CONST_ON ((uint8_t)0x01)
#define LIGHT_MODE_BREATH ((uint8_t)0x02)
#define LIGHT_MODE_CUSTOM ((uint8_t)0x03)
// Actuator State
#define BATTERY_VOLTAGE_LOW ((uint8_t)0x00)
#define MOTOR_OVERHEAT ((uint8_t)0x01)
#define MOTOR_DRIVER_OVERLOAD ((uint8_t)0x02)
#define MOTOR_DRIVER_OVERHEAT ((uint8_t)0x03)
#define MOTOR_SENSOR_FAULT ((uint8_t)0x04)
#define MOTOR_DRIVER_FAULT ((uint8_t)0x05)
#define MOTOR_DRIVER_ENABLED ((uint8_t)0x06)
#define MOTOR_DRIVER_RESERVED0 ((uint8_t)0x07)
/*-------------------- Control/Feedback Messages -----------------------*/
@@ -109,7 +90,73 @@
// reference: https://stackoverflow.com/questions/3318410/pragma-pack-effect
#pragma pack(push, 1)
// System Status Feedback
// Control messages
typedef union {
struct {
struct {
int8_t high_byte;
int8_t low_byte;
} linear_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} lateral_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} steering_angle;
} cmd;
uint8_t raw[8];
} MotionCommandMessage;
typedef union {
struct {
uint8_t light_ctrl_enabled;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
} cmd;
uint8_t raw[8];
} LightCommandMessage;
typedef union {
struct {
uint8_t control_mode;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t reserved4;
uint8_t reserved5;
uint8_t reserved6;
} cmd;
uint8_t raw[8];
} CtrlModeSelectMessage;
typedef union {
struct {
uint8_t fault_byte;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t reserved4;
uint8_t reserved5;
uint8_t reserved6;
} cmd;
uint8_t raw[8];
} StateResetMessage;
// State feedback messages
typedef union {
struct {
uint8_t vehicle_state;
@@ -122,145 +169,78 @@ typedef union {
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
} status;
} state;
uint8_t raw[8];
} SystemStateMessage;
// Motion Control
typedef union {
struct {
struct {
uint8_t high_byte;
uint8_t low_byte;
} linear_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
} state;
uint8_t raw[8];
} MotionStateMessage;
typedef union {
struct {
uint8_t light_ctrl_enabled;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
} state;
uint8_t raw[8];
} LightStateMessage;
typedef union {
struct {
uint8_t sws;
uint8_t right_stick_left_right;
uint8_t right_stick_up_down;
uint8_t left_stick_left_right;
uint8_t left_stick_up_down;
uint8_t var_a;
uint8_t reserved0;
uint8_t count;
} state;
uint8_t raw[8];
} RcStateMessage;
typedef struct {
uint8_t motor_id;
union {
struct {
struct {
uint8_t high_byte;
uint8_t low_byte;
} rpm;
struct {
uint8_t high_byte;
uint8_t low_byte;
} current;
struct {
int8_t msb;
int8_t high_byte;
int8_t low_byte;
} linear_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
} cmd;
int8_t lsb;
} pulse_count;
} state;
uint8_t raw[8];
} data;
} MotionControlMessage;
typedef struct {
union {
struct {
struct {
uint8_t high_byte;
uint8_t low_byte;
} linear_velocity;
struct {
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
} cmd;
uint8_t raw[8];
} data;
} MotionStatusMessage;
typedef struct {
union {
struct {
uint8_t control_mode;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t reserved4;
uint8_t reserved5;
uint8_t reserved6;
} cmd;
uint8_t raw[8];
} data;
} ModSelectMessage;
// Light Control
typedef struct {
union {
struct {
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
} cmd;
uint8_t raw[8];
} data;
} LightControlMessage;
typedef struct {
union {
struct {
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
} status;
uint8_t raw[8];
} data;
} LightStatusMessage;
// Motor Driver Feedback
typedef struct {
uint8_t motor_id;
union {
struct {
struct {
uint8_t high_byte;
uint8_t low_byte;
} current;
struct {
uint8_t high_byte;
uint8_t low_byte;
} rpm;
int8_t temperature;
uint8_t reserved0;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} MotorDriverStatusMessage;
typedef struct {
uint8_t motor_id;
union {
struct {
struct {
uint8_t high_byte;
uint8_t low_byte;
} rpm;
struct {
uint8_t high_byte;
uint8_t low_byte;
} current;
struct {
int8_t heighest;
int8_t sec_heighest;
int8_t sec_lowest;
int8_t lowest;
} moter_pose;
} status;
uint8_t raw[8];
} data;
} MotorDriverHeightSpeedStatusMessage;
} ActuatorHSStateMessage;
typedef struct {
uint8_t motor_id;
@@ -278,71 +258,33 @@ typedef struct {
uint8_t driver_state;
uint8_t reserved0;
uint8_t reserved1;
} status;
} state;
uint8_t raw[8];
} data;
} MotorDriverLowSpeedStatusMessage;
} ActuatorLSStateMessage;
typedef struct {
uint8_t motor_id;
union {
typedef union {
struct {
struct {
uint8_t heighest;
uint8_t sec_heighest;
uint8_t sec_lowest;
uint8_t lowest;
} left;
uint8_t msb;
uint8_t high_byte;
uint8_t low_byte;
uint8_t lsb;
} left_wheel;
struct {
uint8_t heighest;
uint8_t sec_heighest;
uint8_t sec_lowest;
uint8_t lowest;
} right;
} status;
uint8_t msb;
uint8_t high_byte;
uint8_t low_byte;
uint8_t lsb;
} right_wheel;
} state;
uint8_t raw[8];
} data;
} OdomterMessage;
// For convenience to access status/control message
typedef enum {
ScoutMsgNone = 0x00,
// status messages
ScoutMotionStatusMsg = 0x01,
ScoutLightStatusMsg = 0x02,
ScoutSystemStatusMsg = 0x03,
ScoutMotorDriverStatusMsg = 0x04,
ScoutMotorDriverHeightSpeedStatusMsg = 0x05,
ScoutMotorDriverLowSpeedStatusMsg = 0x06,
ScoutodometerMsg = 0x07,
// control messages
ScoutMotionControlMsg = 0x21,
ScoutLightControlMsg = 0x22,
ScoutControlModeMsg = 0x23
} ScoutMsgType;
typedef struct {
ScoutMsgType type;
union {
// status messages
MotionStatusMessage motion_status_msg;
LightStatusMessage light_status_msg;
SystemStateMessage system_status_msg;
MotorDriverStatusMessage motor_driver_status_msg;
MotorDriverLowSpeedStatusMessage motor_driver_low_speed_status_msg;
MotorDriverHeightSpeedStatusMessage motor_driver_height_speed_status_msg;
OdomterMessage odom_msg;
// control messages
MotionControlMessage motion_control_msg;
LightControlMessage light_control_msg;
ModSelectMessage mode_cmd_msg;
} body;
} AgxMessage;
} OdometryMessage;
#pragma pack(pop)
// #ifdef __cplusplus
// }
// #endif
#ifdef __cplusplus
}
#endif
#endif /* AGX_PROTOCOL_V2_H */

View File

@@ -15,49 +15,30 @@
#include <thread>
#include <mutex>
//#include "wrp_sdk/asyncio/async_can.hpp"
//#include "wrp_sdk/asyncio/async_serial.hpp"
#include "ugv_sdk/mobile_base.hpp"
#include "ugv_sdk/tracer/tracer_protocol.h"
#include "ugv_sdk/tracer/tracer_can_parser.h"
#include "ugv_sdk/tracer/tracer_uart_parser.h"
#include "ugv_sdk/proto/agx_msg_parser.h"
#include "ugv_sdk/tracer/tracer_types.hpp"
namespace westonrobot
{
class TracerBase :public MobileBase
{
namespace westonrobot {
class TracerBase : public MobileBase {
public:
TracerBase() : MobileBase(){};
~TracerBase() = default;
// get robot state
TracerState GetTracerState();
UartTracerState GetUartTracerState();
void EnableCommandedMode();
// motion control
void SetMotionCommand(double linear_vel, double angular_vel,
TracerMotionCmd::FaultClearFlag fault_clr_flag = TracerMotionCmd::FaultClearFlag::NO_FAULT);
void SetMotionCommand(double linear_vel, double angular_vel);
// light control
void SetLightCommand(TracerLightCmd cmd);
void DisableLightCmdControl();
private:
// CAN priority higher than serial if both connected
// bool can_connected_ = false;
// bool serial_connected_ = false;
// serial port related variables
uint8_t tx_cmd_len_;
uint8_t tx_buffer_[TRACER_CMD_BUF_LEN];
// cmd/status update related variables
//std::thread cmd_thread_;
std::mutex tracer_state_mutex_;
std::mutex uart_tracer_state_mutex_;
std::mutex motion_cmd_mutex_;
@@ -65,32 +46,21 @@ private:
std::mutex mode_cmd_mutex_;
TracerState tracer_state_;
UartTracerState uart_tracer_state_;
TracerMotionCmd current_motion_cmd_;
UartTracerMotionCmd uart_current_motion_cmd_;
TracerLightCmd current_light_cmd_;
// int32_t cmd_thread_period_ms_ = 10;
// bool cmd_thread_started_ = false;
bool light_ctrl_enabled_ = false;
bool light_ctrl_requested_ = false;
void SendMotionCmd(uint8_t count);
void SendRobotCmd() override;
void SendLightCmd(uint8_t count);
void SendControlCmd();
void SendRobotCmd() override;
void ParseCANFrame(can_frame *rx_frame) override;
void ParseUARTBuffer(uint8_t *buf, const size_t bufsize, size_t bytes_received);
// override{};
void NewStatusMsgReceivedCallback(const TracerMessage &msg);
void UartNewStatusMsgReceivedCallback(const UartTracerMessage &msg);
public:
static void UpdateTracerState(const TracerMessage &status_msg, TracerState &state);
static void UartUpdateTracerState(const UartTracerMessage &status_msg, UartTracerState &state);
void NewStatusMsgReceivedCallback(const AgxMessage &msg);
static void UpdateTracerState(const AgxMessage &status_msg,
TracerState &state);
};
} // namespace westonrobot

View File

@@ -1,42 +0,0 @@
/*
* tracer_can_parser.h
*
* Created on: Apr 14, 2020 10:52
* Description:
*
* Copyright (c) 2020 Ruixiang Du (rdu)
*/
#ifndef TRACER_CAN_PARSER_H
#define TRACER_CAN_PARSER_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "ugv_sdk/tracer/tracer_protocol.h"
#ifdef __linux__
#include <linux/can.h>
#else
struct can_frame
{
uint32_t can_id;
uint8_t can_dlc;
uint8_t data[8]__attribute__((aligned(8)));
};
#endif
bool DecodeTracerMsgFromCAN(const struct can_frame *rx_frame, TracerMessage *msg);
void EncodeTracerMsgToCAN(const TracerMessage *msg, struct can_frame *tx_frame);
uint8_t CalcTracerCANChecksum(uint16_t id, uint8_t *data, uint8_t dlc);
#ifdef __cplusplus
}
#endif
#endif /* TRACER_CAN_PARSER_H */

View File

@@ -1,527 +0,0 @@
/*
* tracer_protocol.h
*
* Created on: Apr 14, 2020 10:34
* Description:
*
* Copyright (c) 2020 Ruixiang Du (rdu)
*/
#ifndef TRACER_PROTOCOL_H
#define TRACER_PROTOCOL_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#define TRACER_CMD_BUF_LEN 32
#define TRACER_STATUS_BUF_LEN 32
#define TRACER_FRAME_SIZE 13
#define TRACER_MOTOR1_ID ((uint8_t)0x00)
#define TRACER_MOTOR2_ID ((uint8_t)0x01)
// UART Definitions
#define UART_FRAME_SYSTEM_STATUS_ID ((uint8_t)0x01)
#define UART_FRAME_MOTION_STATUS_ID ((uint8_t)0x02)
#define UART_FRAME_MOTOR1_DRIVER_STATUS_ID ((uint8_t)0x03)
#define UART_FRAME_MOTOR2_DRIVER_STATUS_ID ((uint8_t)0x04)
#define UART_FRAME_LIGHT_STATUS_ID ((uint8_t)0x07)
#define UART_FRAME_MOTION_CONTROL_ID ((uint8_t)0x01)
#define UART_FRAME_LIGHT_CONTROL_ID ((uint8_t)0x02)
// CAN Definitions
#define CAN_MSG_MOTION_CMD_ID ((uint32_t)0x111)
#define CAN_MSG_MOTION_STATUS_ID ((uint32_t)0x221)
#define CAN_MSG_LIGHT_CONTROL_CMD_ID ((uint32_t)0x121)
#define CAN_MSG_LIGHT_CONTROL_STATUS_ID ((uint32_t)0x231)
#define CAN_MSG_SYSTEM_STATUS_STATUS_ID ((uint32_t)0x211)
#define CAN_MSG_MOTOR1_DRIVER_STATUS_ID ((uint32_t)0x251)
#define CAN_MSG_MOTOR2_DRIVER_STATUS_ID ((uint32_t)0x252)
#define CAN_MSG_COMTROL_MODE_ID ((uint32_t)0x421)
#define CAN_MSG_ODOMETER_ID ((uint32_t)0x311)
/*--------------------- Control/State Constants ------------------------*/
// Motion Control
#define CTRL_MODE_REMOTE ((uint8_t)0x00)
#define CTRL_MODE_CMD_CAN ((uint8_t)0x01)
#define CTRL_MODE_CMD_UART ((uint8_t)0x02)
#define CTRL_MODE_COMMANDED ((uint8_t)0x03)
#define FAULT_CLR_NONE ((uint8_t)0x00)
#define FAULT_CLR_BAT_UNDER_VOL ((uint8_t)0x01)
#define FAULT_CLR_BAT_OVER_VOL ((uint8_t)0x02)
#define FAULT_CLR_MOTOR1_COMM ((uint8_t)0x03)
#define FAULT_CLR_MOTOR2_COMM ((uint8_t)0x04)
#define FAULT_CLR_MOTOR3_COMM ((uint8_t)0x05)
#define FAULT_CLR_MOTOR4_COMM ((uint8_t)0x06)
#define FAULT_CLR_MOTOR_DRV_OVERHEAT ((uint8_t)0x07)
#define FAULT_CLR_MOTOR_OVERCURRENT ((uint8_t)0x08)
// Light Control
#define LIGHT_DISABLE_CTRL ((uint8_t)0x00)
#define LIGHT_ENABLE_CTRL ((uint8_t)0x01)
#define LIGHT_MODE_CONST_OFF ((uint8_t)0x00)
#define LIGHT_MODE_CONST_ON ((uint8_t)0x01)
#define LIGHT_MODE_BREATH ((uint8_t)0x02)
#define LIGHT_MODE_CUSTOM ((uint8_t)0x03)
// System Status Feedback
#define BASE_STATE_NORMAL ((uint8_t)0x00)
#define BASE_STATE_ESTOP ((uint8_t)0x01)
#define BASE_STATE_EXCEPTION ((uint8_t)0x02)
#define FAULT_CAN_CHECKSUM_ERROR ((uint16_t)0x0100)
#define FAULT_FRONT_STEER_ENCODER_F ((uint16_t)0x0200)
#define FAULT_RC_SIGNAL_LOSS ((uint16_t)0x0400)
#define FAULT_HIGH_BYTE_RESERVED1 ((uint16_t)0x0800)
#define FAULT_HIGH_BYTE_RESERVED2 ((uint16_t)0x1000)
#define FAULT_HIGH_BYTE_RESERVED3 ((uint16_t)0x2000)
#define FAULT_HIGH_BYTE_RESERVED4 ((uint16_t)0x4000)
#define FAULT_HIGH_BYTE_RESERVED5 ((uint16_t)0x8000)
#define FAULT_BAT_UNDER_VOL_F ((uint16_t)0x0001)
#define FAULT_BAT_OVER_VOL_F ((uint16_t)0x0002)
#define FAULT_MOTOR1_COMM_F ((uint16_t)0x0004)
#define FAULT_MOTOR2_COMM_F ((uint16_t)0x0008)
#define FAULT_RESERVED1 ((uint16_t)0x0010)
#define FAULT_RESERVED2 ((uint16_t)0x0020)
#define FAULT_MOTOR_DRV_OVERHEAT_F ((uint16_t)0x0040)
#define FAULT_MOTOR_OVERCURRENT_F ((uint16_t)0x0080)
/*-------------------- Control/Feedback Messages -----------------------*/
/* No padding in the struct */
// reference: https://stackoverflow.com/questions/3318410/pragma-pack-effect
#pragma pack(push, 1)
// Note: id could be different for UART and CAN protocol
// Motion Control(can)
typedef struct {
union
{
struct
{
struct
{
int8_t H_byte;
int8_t L_byte;
}linear_velocity;
struct
{
int8_t H_byte;
int8_t L_byte;
}angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
} cmd;
uint8_t raw[8];
} data;
} MotionCmdMessage;
// Motion Control(uart)
typedef struct {
union
{
struct
{
uint8_t control_mode;
uint8_t fault_clear_flag;
int8_t linear_velocity_cmd;
int8_t angular_velocity_cmd;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
uint8_t checksum;
} cmd;
uint8_t raw[8];
} data;
} UartMotionControlMessage;
typedef struct {
union
{
struct
{
uint8_t control_mode;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t reserved4;
uint8_t reserved5;
uint8_t reserved6;
} cmd;
uint8_t raw[8];
} data;
} ModSelectMessage;
typedef struct {
union
{
struct
{
struct
{
uint8_t high_byte;
uint8_t low_byte;
} linear_velocity;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
} status;
uint8_t raw[8];
} data;
} MotionStatusMessage;
typedef struct {
union
{
struct
{
struct
{
uint8_t high_byte;
uint8_t low_byte;
} linear_velocity;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} angular_velocity;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} UartMotionStatusMessage;
// System Status Feedback
typedef struct {
union
{
struct
{
uint8_t base_state;
uint8_t control_mode;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} battery_voltage;
uint8_t fault_code;
uint8_t reserved0;
uint8_t reserved1;
uint8_t count;
//uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} SystemStatusMessage;
typedef struct {
union
{
struct
{
uint8_t base_state;
uint8_t control_mode;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} battery_voltage;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} fault_code;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} UartSystemStatusMessage;
// Light Control
typedef struct {
union
{
struct
{
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t count;
} cmd;
uint8_t raw[8];
} data;
} LightControlMessage;
typedef struct {
union
{
struct
{
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t count;
uint8_t checksum;
} cmd;
uint8_t raw[8];
} data;
} UartLightControlMessage;
typedef struct {
union
{
struct
{
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t count;
} status;
uint8_t raw[8];
} data;
} LightStatusMessage;
typedef struct {
union
{
struct
{
uint8_t light_ctrl_enable;
uint8_t front_light_mode;
uint8_t front_light_custom;
uint8_t rear_light_mode;
uint8_t rear_light_custom;
uint8_t reserved0;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} UartLightStatusMessage;
// Motor Driver Feedback
typedef struct
{
uint8_t motor_id;
union {
struct
{
struct
{
uint8_t high_byte;
uint8_t low_byte;
} current;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} rpm;
int8_t temperature;
uint8_t reserved0;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} MotorDriverStatusMessage;
typedef struct
{
uint8_t motor_id;
union {
struct
{
struct
{
uint8_t high_byte;
uint8_t low_byte;
} current;
struct
{
uint8_t high_byte;
uint8_t low_byte;
} rpm;
int8_t temperature;
uint8_t reserved0;
uint8_t count;
uint8_t checksum;
} status;
uint8_t raw[8];
} data;
} UartMotorDriverStatusMessage;
typedef struct
{
uint8_t motor_id;
union {
struct
{
struct
{
uint8_t high_byte;
uint8_t low_byte;
} rpm;
int8_t reserved0;
int8_t reserved1;
int8_t reserved2;
int8_t reserved3;
int8_t reserved4;
int8_t reserved5;
} status;
uint8_t raw[8];
} data;
} MotorHeightSpeedStatusMessage;
typedef struct
{
uint8_t motor_id;
union {
struct
{
int8_t reserved0;
int8_t reserved1;
int8_t reserved2;
int8_t reserved3;
int8_t reserved4;
int8_t driver_state;
int8_t reserved5;
int8_t reserved6;
} status;
uint8_t raw[8];
} data;
} MotorLowSpeedStatusMessage;
typedef struct
{
uint8_t motor_id;
union {
struct
{
struct
{
uint8_t highest;
uint8_t sec_highest;
uint8_t sec_lowest;
uint8_t lowest;
}leftodometer;
struct
{
uint8_t highest;
uint8_t sec_highest;
uint8_t sec_lowest;
uint8_t lowest;
}rightodometer;
} status;
uint8_t raw[8];
} data;
} OdometerMessage;
// For convenience to access status/control message
typedef enum
{
TracerMsgNone = 0x00,
// status messages
TracerMotionStatusMsg = 0x01,
TracerLightStatusMsg = 0x02,
TracerSystemStatusMsg = 0x03,
TracerMotorDriverStatusMsg = 0x04,
TracerOdometerMsg = 0x05,
TracerHeighSpeedMsg = 0x06,
TracerLowSpeedMsg = 0x07,
// control messages
TracerMotionCmdMsg = 0x21,
TracerLightControlMsg = 0x22,
TracerModeControlMsg = 0x23
} TracerMsgType;
typedef enum
{
UartTracerMsgNone = 0x00,
// status messages
UartTracerMotionStatusMsg = 0x01,
UartTracerLightStatusMsg = 0x02,
UartTracerSystemStatusMsg = 0x03,
UartTracerMotorDriverStatusMsg = 0x04,
// control messages
UartTracerMotionControlMsg = 0x21,
UartTracerLightControlMsg = 0x22
} UartTracerMsgType;
typedef struct
{
TracerMsgType type;
union {
// status messages
MotionStatusMessage motion_status_msg;
LightStatusMessage light_status_msg;
SystemStatusMessage system_status_msg;
MotorDriverStatusMessage motor_driver_status_msg;
OdometerMessage odom_msg;
MotorHeightSpeedStatusMessage motor_heigh_speed_msg;
MotorLowSpeedStatusMessage motor_low_speed_msg;
// control messages
MotionCmdMessage motion_cmd_msg;
LightControlMessage light_control_msg;
ModSelectMessage mode_cmd_msg;
} body;
} TracerMessage;
typedef struct
{
UartTracerMsgType type;
union {
// status messages
UartMotionStatusMessage motion_status_msg;
UartLightStatusMessage light_status_msg;
UartSystemStatusMessage system_status_msg;
UartMotorDriverStatusMessage motor_driver_status_msg;
// control messages
UartMotionControlMessage motion_control_msg;
UartLightControlMessage light_control_msg;
} body;
} UartTracerMessage;
#pragma pack(pop)
#ifdef __cplusplus
}
#endif
#endif /* TRACER_PROTOCOL_H */

View File

@@ -13,19 +13,20 @@
#include <cstdint>
#include <iostream>
namespace westonrobot
{
struct TracerState
{
struct MotorState
{
//double current = 0; // in A
double rpm = 0;
//double temperature = 0;
namespace westonrobot {
struct TracerState {
struct ActuatorState {
double motor_current = 0; // in A
uint16_t motor_rpm = 0;
uint16_t motor_pulses = 0;
double motor_temperature = 0;
double driver_voltage = 0;
double driver_temperature = 0;
uint8_t driver_state = 0;
};
struct LightState
{
struct LightState {
uint8_t mode = 0;
uint8_t custom_value = 0;
};
@@ -36,8 +37,8 @@ struct TracerState
uint8_t fault_code = 0;
double battery_voltage = 0.0;
// motor state
MotorState motor_states[2];
// actuator state
ActuatorState actuator_states[2];
// light state
bool light_control_enabled = false;
@@ -48,118 +49,25 @@ struct TracerState
double angular_velocity = 0;
// odometer state
double left_odomter = 0;
double right_odomter = 0;
};
struct UartTracerState
{
enum MotorID
{
FRONT_RIGHT = 0,
FRONT_LEFT = 1,
REAR_LEFT = 2,
REAR_RIGHT = 3
double left_odometry = 0;
double right_odometry = 0;
};
struct MotorState
{
double current = 9; // in A
double rpm = 0;
double temperature = 9;
struct TracerMotionCmd {
TracerMotionCmd(double linear = 0.0, double angular = 0.0)
: linear_velocity(linear), angular_velocity(angular) {}
double linear_velocity;
double angular_velocity;
static constexpr double max_linear_velocity = 1.8; // m/s
static constexpr double min_linear_velocity = -1.8;
static constexpr double max_angular_velocity = 1.0; // rad/s
static constexpr double min_angular_velocity = -1.0;
};
struct LightState
{
uint8_t mode = 0;
uint8_t custom_value = 0;
};
// base state
uint8_t base_state = 0;
uint8_t control_mode = 0;
uint16_t fault_code = 0;
double battery_voltage = 0.0;
// motor state
static constexpr uint8_t motor_num = 2;
MotorState motor_states[motor_num];
// light state
bool light_control_enabled = false;
LightState front_light_state;
LightState rear_light_state;
// motion state
double linear_velocity = 0;
double angular_velocity = 0;
};
struct TracerMotionCmd
{
enum class FaultClearFlag
{
NO_FAULT = 0x00,
BAT_UNDER_VOL = 0x01,
BAT_OVER_VOL = 0x02,
MOTOR1_COMM = 0x03,
MOTOR2_COMM = 0x04,
MOTOR3_COMM = 0x05,
MOTOR4_COMM = 0x06,
MOTOR_DRV_OVERHEAT = 0x07,
MOTOR_OVERCURRENT = 0x08
};
TracerMotionCmd(int8_t linear_H = 0, int8_t angular_H = 0,int8_t linear_L = 0, int8_t angular_L = 0,
FaultClearFlag fault_clr_flag = FaultClearFlag::NO_FAULT)
: linear_velocity_H(linear_H), angular_velocity_H(angular_H),linear_velocity_L(linear_L), angular_velocity_L(angular_L),
fault_clear_flag(fault_clr_flag) {}
int8_t linear_velocity_H;
int8_t linear_velocity_L;
int8_t angular_velocity_H;
int8_t angular_velocity_L;
FaultClearFlag fault_clear_flag;
static constexpr double max_linear_velocity = 1.5; // 1.5 m/s
static constexpr double min_linear_velocity = -1.5; // -1.5 m/s
static constexpr double max_angular_velocity = 0.7853; // 0.5235 rad/s
static constexpr double min_angular_velocity = -0.7853; // -0.5235 rad/s
};
struct UartTracerMotionCmd
{
enum class FaultClearFlag
{
NO_FAULT = 0x00,
BAT_UNDER_VOL = 0x01,
BAT_OVER_VOL = 0x02,
MOTOR1_COMM = 0x03,
MOTOR2_COMM = 0x04,
MOTOR3_COMM = 0x05,
MOTOR4_COMM = 0x06,
MOTOR_DRV_OVERHEAT = 0x07,
MOTOR_OVERCURRENT = 0x08
};
UartTracerMotionCmd(int8_t linear = 0, int8_t angular = 0,
FaultClearFlag fault_clr_flag = FaultClearFlag::NO_FAULT)
: linear_velocity(linear), angular_velocity(angular),
fault_clear_flag(fault_clr_flag) {}
int8_t linear_velocity;
int8_t angular_velocity;
FaultClearFlag fault_clear_flag = FaultClearFlag::NO_FAULT;
static constexpr double max_linear_velocity = 1.5; // 1.5 m/s
static constexpr double min_linear_velocity = -1.5; // -1.5 m/s
static constexpr double max_angular_velocity = 0.5235; // 0.5235 rad/s
static constexpr double min_angular_velocity = -0.5235; // -0.5235 rad/s
};
struct TracerLightCmd
{
enum class LightMode
{
struct TracerLightCmd {
enum class LightMode {
CONST_OFF = 0x00,
CONST_ON = 0x01,
BREATH = 0x02,
@@ -167,8 +75,12 @@ struct TracerLightCmd
};
TracerLightCmd() = default;
TracerLightCmd(LightMode f_mode, uint8_t f_value, LightMode r_mode, uint8_t r_value) : front_mode(f_mode), front_custom_value(f_value),
rear_mode(r_mode), rear_custom_value(r_value) {}
TracerLightCmd(LightMode f_mode, uint8_t f_value, LightMode r_mode,
uint8_t r_value)
: front_mode(f_mode),
front_custom_value(f_value),
rear_mode(r_mode),
rear_custom_value(r_value) {}
LightMode front_mode;
uint8_t front_custom_value;

View File

@@ -1,24 +0,0 @@
#ifndef TRACE_UART_PARSER_H
#define TRACE_UART_PARSER_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "ugv_sdk/tracer/tracer_protocol.h"
bool DecodeTracerMsgFromUART(uint8_t c, UartTracerMessage *msg);
void EncodeTracerMsgToUART(const UartTracerMessage *msg, uint8_t *buf, uint8_t *len);
uint8_t CalcTracerUARTChecksum(uint8_t *buf, uint8_t len);
#ifdef __cplusplus
}
#endif
#endif /* TRACE_UART_PARSER_H */

View File

@@ -11,134 +11,86 @@
#include "string.h"
// #define USE_XOR_CHECKSUM
// #define PRINT_CPP_DEBUG_INFO
// #define PRINT_JLINK_DEBUG_INFO
#ifdef PRINT_CPP_DEBUG_INFO
#define < iostream>
#elif (defined(PRINT_JLINK_DEBUG_INFO))
#include "segger/jlink_rtt.h"
#endif
static void EncodeScoutMotionControlMsgToCAN(const MotionControlMessage *msg,
struct can_frame *tx_frame);
static void EncodeScoutLightControlMsgToCAN(const LightControlMessage *msg,
struct can_frame *tx_frame);
static void EncodeScoutnControlModeMsgToCAN(const ModSelectMessage *msg,
struct can_frame *tx_frame);
bool DecodeCanFrame(const struct can_frame *rx_frame, AgxMessage *msg) {
msg->type = ScoutMsgNone;
msg->type = AgxMsgUnkonwn;
switch (rx_frame->can_id) {
// in the current implementation, both MsgType and can_frame include 8 *
// uint8_t
case CAN_MSG_MOTION_STATE_ID: {
msg->type = ScoutMotionStatusMsg;
// msg->motion_status_msg.id = CAN_MSG_MOTION_STATE_ID;
memcpy(msg->body.motion_status_msg.data.raw, rx_frame->data,
// command frame
case CAN_MSG_MOTION_COMMAND_ID: {
msg->type = AgxMsgMotionCommand;
memcpy(msg->body.motion_command_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_LIGHT_CONTROL_STATUS_ID: {
msg->type = ScoutLightStatusMsg;
// msg->light_status_msg.id = CAN_MSG_LIGHT_CONTROL_STATUS_ID;
memcpy(msg->body.light_status_msg.data.raw, rx_frame->data,
case CAN_MSG_LIGHT_COMMAND_ID: {
msg->type = AgxMsgLightCommand;
memcpy(msg->body.light_command_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_RC_STATE_ID: {
msg->type = AgxMsgRcState;
memcpy(msg->body.rc_state_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_CTRL_MODE_SELECT_ID: {
msg->type = AgxMsgCtrlModeSelect;
memcpy(msg->body.ctrl_mode_select_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_STATE_RESET_ID: {
msg->type = AgxMsgFaultByteReset;
memcpy(msg->body.state_reset_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
// state feedback frame
case CAN_MSG_SYSTEM_STATE_ID: {
msg->type = ScoutSystemStatusMsg;
// msg->system_status_msg.id = CAN_MSG_SYSTEM_STATE_ID;
memcpy(msg->body.system_status_msg.raw, rx_frame->data,
msg->type = AgxMsgSystemState;
memcpy(msg->body.system_state_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
// in the current implementation, both MsgType and can_frame include 8 *
// uint8_t
case CAN_MSG_MOTION_CONTROL_CMD_ID: {
msg->type = ScoutMotionControlMsg;
// msg->motion_control_msg.id = CAN_MSG_MOTION_CONTROL_CMD_ID;
memcpy(msg->body.motion_control_msg.data.raw, rx_frame->data,
case CAN_MSG_MOTION_STATE_ID: {
msg->type = AgxMsgMotionState;
memcpy(msg->body.motion_state_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_LIGHT_CONTROL_CMD_ID: {
msg->type = ScoutLightControlMsg;
// msg->light_control_msg.id = CAN_MSG_LIGHT_CONTROL_STATUS_ID;
memcpy(msg->body.light_control_msg.data.raw, rx_frame->data,
case CAN_MSG_LIGHT_STATE_ID: {
msg->type = AgxMsgLightState;
memcpy(msg->body.light_state_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR1_LOW_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverLowSpeedStatusMsg;
msg->body.motor_driver_low_speed_status_msg.motor_id = SCOUT_MOTOR1_ID;
memcpy(msg->body.motor_driver_low_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR2_LOW_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverLowSpeedStatusMsg;
msg->body.motor_driver_low_speed_status_msg.motor_id = SCOUT_MOTOR2_ID;
memcpy(msg->body.motor_driver_low_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR3_LOW_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverLowSpeedStatusMsg;
msg->body.motor_driver_low_speed_status_msg.motor_id = SCOUT_MOTOR3_ID;
memcpy(msg->body.motor_driver_low_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR4_LOW_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverLowSpeedStatusMsg;
msg->body.motor_driver_low_speed_status_msg.motor_id = SCOUT_MOTOR4_ID;
memcpy(msg->body.motor_driver_low_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR1_HEIGHT_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverHeightSpeedStatusMsg;
msg->body.motor_driver_height_speed_status_msg.motor_id = SCOUT_MOTOR1_ID;
memcpy(msg->body.motor_driver_height_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR2_HEIGHT_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverHeightSpeedStatusMsg;
msg->body.motor_driver_height_speed_status_msg.motor_id = SCOUT_MOTOR2_ID;
memcpy(msg->body.motor_driver_height_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR3_HEIGHT_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverHeightSpeedStatusMsg;
msg->body.motor_driver_height_speed_status_msg.motor_id = SCOUT_MOTOR3_ID;
memcpy(msg->body.motor_driver_height_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR4_HEIGHT_DRIVER_STATUS_ID: {
msg->type = ScoutMotorDriverHeightSpeedStatusMsg;
msg->body.motor_driver_height_speed_status_msg.motor_id = SCOUT_MOTOR4_ID;
memcpy(msg->body.motor_driver_height_speed_status_msg.data.raw,
rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_ODOMETER_ID: {
msg->type = ScoutodometerMsg;
// msg->light_control_msg.id = CAN_MSG_LIGHT_CONTROL_STATUS_ID;
memcpy(msg->body.odom_msg.data.raw, rx_frame->data,
case CAN_MSG_ODOMETRY_ID: {
msg->type = AgxMsgOdometry;
memcpy(msg->body.odometry_msg.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_ACTUATOR1_HS_STATE_ID:
case CAN_MSG_ACTUATOR2_HS_STATE_ID:
case CAN_MSG_ACTUATOR3_HS_STATE_ID:
case CAN_MSG_ACTUATOR4_HS_STATE_ID: {
msg->type = AgxMsgActuatorLSState;
msg->body.actuator_hs_state_msg.motor_id =
(uint8_t)(rx_frame->can_id - CAN_MSG_ACTUATOR1_HS_STATE_ID);
memcpy(msg->body.actuator_hs_state_msg.data.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_ACTUATOR1_LS_STATE_ID:
case CAN_MSG_ACTUATOR2_LS_STATE_ID:
case CAN_MSG_ACTUATOR3_LS_STATE_ID:
case CAN_MSG_ACTUATOR4_LS_STATE_ID: {
msg->type = AgxMsgActuatorLSState;
msg->body.actuator_ls_state_msg.motor_id =
(uint8_t)(rx_frame->can_id - CAN_MSG_ACTUATOR1_LS_STATE_ID);
memcpy(msg->body.actuator_ls_state_msg.data.raw, rx_frame->data,
rx_frame->can_dlc * sizeof(uint8_t));
// printf("%x\t",msg->body.odom_msg.data.status.left.heighest);
// printf("%x\t",msg->body.odom_msg.data.status.left.sec_heighest);
// printf("%x\t",msg->body.odom_msg.data.status.left.sec_lowest);
// printf("%x\r\n",msg->body.odom_msg.data.status.left.lowest);
// printf("%x\t",msg->body.odom_msg.data.raw);
// printf("%x\r\n",msg->body.odom_msg.data.status);
break;
}
default:
@@ -150,91 +102,118 @@ bool DecodeCanFrame(const struct can_frame *rx_frame, AgxMessage *msg) {
void EncodeCanFrame(const AgxMessage *msg, struct can_frame *tx_frame) {
switch (msg->type) {
// in the current implementation, both MsgType and can_frame include 8 *
// uint8_t
case ScoutMotionStatusMsg: {
tx_frame->can_id = CAN_MSG_MOTION_STATE_ID;
// command frame
case AgxMsgMotionCommand: {
tx_frame->can_id = CAN_MSG_MOTION_COMMAND_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.motion_status_msg.data.raw,
memcpy(tx_frame->data, msg->body.motion_command_msg.raw,
tx_frame->can_dlc);
// tx_frame->data[7] = CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data,
// tx_frame->can_dlc);
break;
}
case AgxMsgLightCommand: {
tx_frame->can_id = CAN_MSG_LIGHT_COMMAND_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.light_command_msg.raw,
tx_frame->can_dlc);
// tx_frame->data[7] = CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data,
// tx_frame->can_dlc);
break;
}
case AgxMsgCtrlModeSelect: {
tx_frame->can_id = CAN_MSG_CTRL_MODE_SELECT_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.ctrl_mode_select_msg.raw,
tx_frame->can_dlc);
// tx_frame->data[7] = CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data,
// tx_frame->can_dlc);
break;
}
case AgxMsgFaultByteReset: {
tx_frame->can_id = CAN_MSG_STATE_RESET_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.state_reset_msg.raw, tx_frame->can_dlc);
tx_frame->data[7] = CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data,
tx_frame->can_dlc);
break;
}
case ScoutLightStatusMsg: {
tx_frame->can_id = CAN_MSG_LIGHT_CONTROL_STATUS_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.light_status_msg.data.raw,
tx_frame->can_dlc);
break;
}
case ScoutSystemStatusMsg: {
// state feedback frame
case AgxMsgSystemState: {
tx_frame->can_id = CAN_MSG_SYSTEM_STATE_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.system_status_msg.raw,
memcpy(tx_frame->data, msg->body.system_state_msg.raw, tx_frame->can_dlc);
break;
}
case AgxMsgMotionState: {
tx_frame->can_id = CAN_MSG_MOTION_STATE_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.motion_state_msg.raw, tx_frame->can_dlc);
break;
}
case AgxMsgLightState: {
tx_frame->can_id = CAN_MSG_LIGHT_STATE_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.light_state_msg.raw, tx_frame->can_dlc);
break;
}
case AgxMsgOdometry: {
tx_frame->can_id = CAN_MSG_ODOMETRY_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.odometry_msg.raw, tx_frame->can_dlc);
break;
}
case AgxMsgActuatorHSState: {
switch (msg->body.actuator_hs_state_msg.motor_id) {
case ACTUATOR1_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR1_HS_STATE_ID;
break;
}
case ACTUATOR2_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR2_HS_STATE_ID;
break;
}
case ACTUATOR3_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR3_HS_STATE_ID;
break;
}
case ACTUATOR4_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR4_HS_STATE_ID;
break;
}
}
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.actuator_hs_state_msg.data.raw,
tx_frame->can_dlc);
break;
}
// case ScoutMotorDriverStatusMsg:
// {
// if (msg->body.motor_driver_status_msg.motor_id ==
// SCOUT_MOTOR1_ID)
// tx_frame->can_id = CAN_MSG_MOTOR1_DRIVER_STATUS_ID;
// else if (msg->body.motor_driver_status_msg.motor_id ==
// SCOUT_MOTOR2_ID)
// tx_frame->can_id = CAN_MSG_MOTOR2_DRIVER_STATUS_ID;
// else if (msg->body.motor_driver_status_msg.motor_id ==
// SCOUT_MOTOR3_ID)
// tx_frame->can_id = CAN_MSG_MOTOR3_DRIVER_STATUS_ID;
// else if (msg->body.motor_driver_status_msg.motor_id ==
// SCOUT_MOTOR4_ID)
// tx_frame->can_id = CAN_MSG_MOTOR4_DRIVER_STATUS_ID;
// tx_frame->can_dlc = 8;
// memcpy(tx_frame->data,
// msg->body.motor_driver_status_msg.data.raw, tx_frame->can_dlc);
// break;
// }
case ScoutMotionControlMsg: {
EncodeScoutMotionControlMsgToCAN(&(msg->body.motion_control_msg),
tx_frame);
case AgxMsgActuatorLSState: {
switch (msg->body.actuator_ls_state_msg.motor_id) {
case ACTUATOR1_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR1_LS_STATE_ID;
break;
}
// TODO check correctiveness
// case ScoutControlModeMsg: {
// EncodeScoutnControlModeMsgToCAN(&(msg->body.motion_control_msg),
// tx_frame);
// break;
// }
case ScoutLightControlMsg: {
EncodeScoutLightControlMsgToCAN(&(msg->body.light_control_msg), tx_frame);
case ACTUATOR2_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR2_LS_STATE_ID;
break;
}
case ACTUATOR3_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR3_LS_STATE_ID;
break;
}
case ACTUATOR4_ID: {
tx_frame->can_id = CAN_MSG_ACTUATOR4_LS_STATE_ID;
break;
}
}
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.actuator_ls_state_msg.data.raw,
tx_frame->can_dlc);
break;
}
default:
break;
}
// tx_frame->data[7] = CalcCanFrameChecksum(tx_frame->can_id,
// tx_frame->data, tx_frame->can_dlc);
}
void EncodeScoutMotionControlMsgToCAN(const MotionControlMessage *msg,
struct can_frame *tx_frame) {
tx_frame->can_id = CAN_MSG_MOTION_CONTROL_CMD_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->data.raw, tx_frame->can_dlc);
tx_frame->data[7] =
CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}
void EncodeScoutnControlModeMsgToCAN(const ModSelectMessage *msg,
struct can_frame *tx_frame) {
tx_frame->can_id = CAN_MSG_SELECT_CONTROL_MODE_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->data.raw, tx_frame->can_dlc);
tx_frame->data[7] =
CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}
void EncodeScoutLightControlMsgToCAN(const LightControlMessage *msg,
struct can_frame *tx_frame) {
tx_frame->can_id = CAN_MSG_LIGHT_CONTROL_CMD_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->data.raw, tx_frame->can_dlc);
tx_frame->data[7] =
CalcCanFrameChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}

View File

@@ -12,233 +12,101 @@
#include "stopwatch.hpp"
namespace westonrobot
{
namespace westonrobot {
void TracerBase::SendRobotCmd() {
static uint8_t cmd_count = 0;
static uint8_t light_cmd_count = 0;
if(can_connected_) SendControlCmd();
if (can_connected_) {
SendMotionCmd(cmd_count++);
if (light_ctrl_requested_) SendLightCmd(light_cmd_count++);
SendLightCmd(light_cmd_count++);
// if (light_ctrl_requested_)
// SendLightCmd(light_cmd_count++);
// else
// std::cout << "not updating light cmd" << std::endl;
}
}
void TracerBase::EnableCommandedMode() {
AgxMessage c_msg;
c_msg.type = AgxMsgCtrlModeSelect;
memset(c_msg.body.ctrl_mode_select_msg.raw, 0, 8);
c_msg.body.ctrl_mode_select_msg.cmd.control_mode = CTRL_MODE_CMD_CAN;
void TracerBase::SendMotionCmd(uint8_t count)
{
if(can_connected_)
{
// send to can bus
can_frame c_frame;
EncodeCanFrame(&c_msg, &c_frame);
can_if_->SendFrame(c_frame);
}
void TracerBase::SendMotionCmd(uint8_t count) {
// motion control message
TracerMessage m_msg;
m_msg.type = TracerMotionCmdMsg;
AgxMessage m_msg;
m_msg.type = AgxMsgMotionCommand;
memset(m_msg.body.motion_command_msg.raw, 0, 8);
motion_cmd_mutex_.lock();
int16_t linear_cmd =
static_cast<int16_t>(current_motion_cmd_.linear_velocity) * 1000;
int16_t angular_cmd =
static_cast<int16_t>(current_motion_cmd_.angular_velocity) * 1000;
motion_cmd_mutex_.unlock();
// SendControlCmd();
motion_cmd_mutex_.lock();
m_msg.body.motion_cmd_msg.data.cmd.linear_velocity.H_byte = current_motion_cmd_.linear_velocity_H;
m_msg.body.motion_cmd_msg.data.cmd.linear_velocity.L_byte = current_motion_cmd_.linear_velocity_L;
m_msg.body.motion_cmd_msg.data.cmd.angular_velocity.H_byte = current_motion_cmd_.angular_velocity_H;
m_msg.body.motion_cmd_msg.data.cmd.angular_velocity.L_byte = current_motion_cmd_.angular_velocity_L;
motion_cmd_mutex_.unlock();
m_msg.body.motion_cmd_msg.data.cmd.reserved0 = 0;
m_msg.body.motion_cmd_msg.data.cmd.reserved1 = 0;
m_msg.body.motion_cmd_msg.data.cmd.reserved2 = 0;
m_msg.body.motion_cmd_msg.data.cmd.reserved3 = 0;
m_msg.body.motion_command_msg.cmd.linear_velocity.high_byte =
(static_cast<uint16_t>(linear_cmd) >> 8) & 0x00ff;
m_msg.body.motion_command_msg.cmd.linear_velocity.low_byte =
(static_cast<uint16_t>(linear_cmd) >> 0) & 0x00ff;
m_msg.body.motion_command_msg.cmd.angular_velocity.high_byte =
(static_cast<uint16_t>(angular_cmd) >> 8) & 0x00ff;
m_msg.body.motion_command_msg.cmd.angular_velocity.low_byte =
(static_cast<uint16_t>(angular_cmd) >> 0) & 0x00ff;
if (can_connected_)
{
// send to can bus
can_frame m_frame;
EncodeTracerMsgToCAN(&m_msg, &m_frame);
EncodeCanFrame(&m_msg, &m_frame);
can_if_->SendFrame(m_frame);
}
// else
// {
// // TODO
// // send to serial port
// // EncodeTracerMsgToUART(&m_msg, tx_buffer_, &tx_cmd_len_);
// // serial_if_->send_bytes(tx_buffer_, tx_cmd_len_);
// }
// if (can_connected_)
// m_msg.body.motion_cmd_msg.data.cmd.checksum = CalcTracerCANChecksum(CAN_MSG_MOTION_CMD_ID, m_msg.body.motion_cmd_msg.data.raw, 8);
// serial_connected_: checksum will be calculated later when packed into a complete serial frame
}
else if (serial_connected_){
UartTracerMessage m_msg;
m_msg.type = UartTracerMotionControlMsg;
m_msg.body.motion_control_msg.data.cmd.control_mode = CTRL_MODE_CMD_UART;
//SendControlCmd();
motion_cmd_mutex_.lock();
m_msg.body.motion_control_msg.data.cmd.fault_clear_flag =
static_cast<uint8_t>(uart_current_motion_cmd_.fault_clear_flag);
m_msg.body.motion_control_msg.data.cmd.linear_velocity_cmd =
uart_current_motion_cmd_.linear_velocity;
m_msg.body.motion_control_msg.data.cmd.angular_velocity_cmd =
uart_current_motion_cmd_.angular_velocity;
motion_cmd_mutex_.unlock();
m_msg.body.motion_control_msg.data.cmd.reserved0 = 0;
m_msg.body.motion_control_msg.data.cmd.reserved1 = 0;
m_msg.body.motion_control_msg.data.cmd.count = count;
// serial_connected_: checksum will be calculated later when packed into a
// complete serial frame
EncodeTracerMsgToUART(&m_msg, tx_buffer_, &tx_cmd_len_);
serial_if_->SendBytes(tx_buffer_, tx_cmd_len_);
}
}
void TracerBase::SendLightCmd(uint8_t count)
{
UartTracerMessage l_msg;
l_msg.type = UartTracerLightControlMsg;
void TracerBase::SendLightCmd(uint8_t count) {
AgxMessage l_msg;
l_msg.type = AgxMsgLightCommand;
memset(l_msg.body.light_command_msg.raw, 0, 8);
light_cmd_mutex_.lock();
if (light_ctrl_enabled_) {
l_msg.body.light_control_msg.data.cmd.light_ctrl_enable = LIGHT_ENABLE_CTRL;
l_msg.body.light_command_msg.cmd.light_ctrl_enabled = LIGHT_CTRL_ENABLE;
l_msg.body.light_control_msg.data.cmd.front_light_mode =
l_msg.body.light_command_msg.cmd.front_light_mode =
static_cast<uint8_t>(current_light_cmd_.front_mode);
l_msg.body.light_control_msg.data.cmd.front_light_custom =
l_msg.body.light_command_msg.cmd.front_light_custom =
current_light_cmd_.front_custom_value;
l_msg.body.light_control_msg.data.cmd.rear_light_mode =
l_msg.body.light_command_msg.cmd.rear_light_mode =
static_cast<uint8_t>(current_light_cmd_.rear_mode);
l_msg.body.light_control_msg.data.cmd.rear_light_custom =
l_msg.body.light_command_msg.cmd.rear_light_custom =
current_light_cmd_.rear_custom_value;
} else {
l_msg.body.light_control_msg.data.cmd.light_ctrl_enable =
LIGHT_DISABLE_CTRL;
l_msg.body.light_control_msg.data.cmd.front_light_mode =
LIGHT_MODE_CONST_OFF;
l_msg.body.light_control_msg.data.cmd.front_light_custom = 0;
l_msg.body.light_control_msg.data.cmd.rear_light_mode =
LIGHT_MODE_CONST_OFF;
l_msg.body.light_control_msg.data.cmd.rear_light_custom = 0;
l_msg.body.light_command_msg.cmd.light_ctrl_enabled = LIGHT_CTRL_DISABLE;
}
light_ctrl_requested_ = false;
light_cmd_mutex_.unlock();
l_msg.body.light_control_msg.data.cmd.reserved0 = 0;
l_msg.body.light_control_msg.data.cmd.count = count;
l_msg.body.light_command_msg.cmd.count = count;
// serial_connected_: checksum will be calculated later when packed into a
// complete serial frame
// send to serial port
EncodeTracerMsgToUART(&l_msg, tx_buffer_, &tx_cmd_len_);
serial_if_->SendBytes(tx_buffer_, tx_cmd_len_);
/*TracerMessage l_msg;
l_msg.type = TracerLightControlMsg;
light_cmd_mutex_.lock();
if (light_ctrl_enabled_)
{
l_msg.body.light_control_msg.data.cmd.light_ctrl_enable = LIGHT_ENABLE_CTRL;
l_msg.body.light_control_msg.data.cmd.front_light_mode = static_cast<uint8_t>(current_light_cmd_.front_mode);
l_msg.body.light_control_msg.data.cmd.front_light_custom = current_light_cmd_.front_custom_value;
//l_msg.body.light_control_msg.data.cmd.rear_light_mode = static_cast<uint8_t>(current_light_cmd_.rear_mode);
//l_msg.body.light_control_msg.data.cmd.rear_light_custom = current_light_cmd_.rear_custom_value;
// std::cout << "cmd: " << l_msg.data.cmd.front_light_mode << " , " << l_msg.data.cmd.front_light_custom << " , "
// << l_msg.data.cmd.rear_light_mode << " , " << l_msg.data.cmd.rear_light_custom << std::endl;
// std::cout << "light cmd generated" << std::endl;
}
else
{
l_msg.body.light_control_msg.data.cmd.light_ctrl_enable = LIGHT_DISABLE_CTRL;
l_msg.body.light_control_msg.data.cmd.front_light_mode = LIGHT_MODE_CONST_OFF;
l_msg.body.light_control_msg.data.cmd.front_light_custom = 0;
//l_msg.body.light_control_msg.data.cmd.rear_light_mode = LIGHT_MODE_CONST_OFF;
//l_msg.body.light_control_msg.data.cmd.rear_light_custom = 0;
}
light_ctrl_requested_ = false;
light_cmd_mutex_.unlock();
l_msg.body.light_control_msg.data.cmd.reserved0 = 0;
l_msg.body.light_control_msg.data.cmd.count = count;
if (can_connected_)
// l_msg.body.light_control_msg.data.cmd.checksum = CalcTracerCANChecksum(CAN_MSG_LIGHT_CONTROL_CMD_ID, l_msg.body.light_control_msg.data.raw, 8);
// serial_connected_: checksum will be calculated later when packed into a complete serial frame
if (can_connected_)
{
// send to can bus
can_frame l_frame;
EncodeTracerMsgToCAN(&l_msg, &l_frame);
EncodeCanFrame(&l_msg, &l_frame);
can_if_->SendFrame(l_frame);
}
// else
// {
// // send to serial port
// EncodeTracerMsgToUART(&l_msg, tx_buffer_, &tx_cmd_len_);
// serial_if_->send_bytes(tx_buffer_, tx_cmd_len_);
// }
// std::cout << "cmd: " << static_cast<int>(l_msg.data.cmd.front_light_mode) << " , " << static_cast<int>(l_msg.data.cmd.front_light_custom) << " , "
// << static_cast<int>(l_msg.data.cmd.rear_light_mode) << " , " << static_cast<int>(l_msg.data.cmd.rear_light_custom) << std::endl;
// std::cout << "can: ";
// for (int i = 0; i < 8; ++i)
// std::cout << static_cast<int>(l_frame.data[i]) << " ";
// std::cout << "uart: ";
// for (int i = 0; i < tx_cmd_len_; ++i)
// std::cout << static_cast<int>(tx_buffer_[i]) << " ";
// std::cout << std::endl;*/
}
void TracerBase::SendControlCmd()
{
TracerMessage c_msg;
c_msg.type = TracerModeControlMsg;
mode_cmd_mutex_.lock();
c_msg.body.mode_cmd_msg.data.cmd.control_mode=0x01;
mode_cmd_mutex_.unlock();
c_msg.body.mode_cmd_msg.data.cmd.reserved0=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved1=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved2=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved3=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved4=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved5=0;
c_msg.body.mode_cmd_msg.data.cmd.reserved6=0;
if (can_connected_)
{
// send to can bus
can_frame c_frame;
EncodeTracerMsgToCAN(&c_msg, &c_frame);
can_if_->SendFrame(c_frame);
}
else
{
// TODO
// send to serial port
// EncodeTracerMsgToUART(&m_msg, tx_buffer_, &tx_cmd_len_);
// serial_if_->send_bytes(tx_buffer_, tx_cmd_len_);
}
}
TracerState TracerBase::GetTracerState()
{
TracerState TracerBase::GetTracerState() {
std::lock_guard<std::mutex> guard(tracer_state_mutex_);
return tracer_state_;
}
UartTracerState TracerBase::GetUartTracerState()
{
std::lock_guard<std::mutex> guard(uart_tracer_state_mutex_);
return uart_tracer_state_;
}
void TracerBase::SetMotionCommand(double linear_vel, double angular_vel, TracerMotionCmd::FaultClearFlag fault_clr_flag)
{
void TracerBase::SetMotionCommand(double linear_vel, double angular_vel) {
// make sure cmd thread is started before attempting to send commands
if (!cmd_thread_started_) StartCmdThread();
if(can_connected_)
{
if (linear_vel < TracerMotionCmd::min_linear_velocity)
linear_vel = TracerMotionCmd::min_linear_velocity;
if (linear_vel > TracerMotionCmd::max_linear_velocity)
@@ -249,217 +117,131 @@ void TracerBase::SetMotionCommand(double linear_vel, double angular_vel, TracerM
angular_vel = TracerMotionCmd::max_angular_velocity;
std::lock_guard<std::mutex> guard(motion_cmd_mutex_);
current_motion_cmd_.linear_velocity_H = static_cast<int16_t>(linear_vel*1000)>>8;
current_motion_cmd_.linear_velocity_L = static_cast<int16_t>(linear_vel*1000)&0xff;
current_motion_cmd_.angular_velocity_H = static_cast<int16_t>(angular_vel*1000)>>8;
current_motion_cmd_.angular_velocity_L = static_cast<int16_t>(angular_vel*1000)&0xff;
current_motion_cmd_.fault_clear_flag = fault_clr_flag;
}
else
{
if (linear_vel < UartTracerMotionCmd::min_linear_velocity)
linear_vel = UartTracerMotionCmd::min_linear_velocity;
if (linear_vel > UartTracerMotionCmd::max_linear_velocity)
linear_vel = UartTracerMotionCmd::max_linear_velocity;
if (angular_vel < UartTracerMotionCmd::min_angular_velocity)
angular_vel = UartTracerMotionCmd::min_angular_velocity;
if (angular_vel > UartTracerMotionCmd::max_angular_velocity)
angular_vel = UartTracerMotionCmd::max_angular_velocity;
current_motion_cmd_.linear_velocity = linear_vel;
current_motion_cmd_.angular_velocity = angular_vel;
std::lock_guard<std::mutex> guard(motion_cmd_mutex_);
uart_current_motion_cmd_.linear_velocity = static_cast<int8_t>(
linear_vel / UartTracerMotionCmd::max_linear_velocity * 100.0);
uart_current_motion_cmd_.angular_velocity = static_cast<int8_t>(
angular_vel / UartTracerMotionCmd::max_angular_velocity * 100.0);
//uart_current_motion_cmd_.fault_clear_flag = FaultClearFlag::NO_FAULT;
//std::cout<<"linear_vel:"<<linear_vel<<std::endl;
}
FeedCmdTimeoutWatchdog();
}
void TracerBase::SetLightCommand(TracerLightCmd cmd)
{
if (!cmd_thread_started_)
StartCmdThread();
void TracerBase::SetLightCommand(TracerLightCmd cmd) {
if (!cmd_thread_started_) StartCmdThread();
std::lock_guard<std::mutex> guard(light_cmd_mutex_);
current_light_cmd_ = cmd;
light_ctrl_enabled_ = true;
light_ctrl_requested_ = true;
FeedCmdTimeoutWatchdog();
}
void TracerBase::DisableLightCmdControl()
{
void TracerBase::DisableLightCmdControl() {
std::lock_guard<std::mutex> guard(light_cmd_mutex_);
light_ctrl_enabled_ = false;
light_ctrl_requested_ = true;
}
void TracerBase::ParseCANFrame(can_frame *rx_frame)
{
// otherwise, update robot state with new frame
TracerMessage status_msg;
DecodeTracerMsgFromCAN(rx_frame, &status_msg);//assigned a value to status_msg from can include status_msg->type
void TracerBase::ParseCANFrame(can_frame *rx_frame) {
AgxMessage status_msg;
DecodeCanFrame(rx_frame, &status_msg);
NewStatusMsgReceivedCallback(status_msg);
}
void TracerBase::ParseUARTBuffer(uint8_t *buf, const size_t bufsize, size_t bytes_received)
{
// std::cout << "bytes received from serial: " << bytes_received << std::endl;
// serial_parser_.PrintStatistics();
// serial_parser_.ParseBuffer(buf, bytes_received);
UartTracerMessage status_msg;
for (int i = 0; i < bytes_received; ++i)
{
if (DecodeTracerMsgFromUART(buf[i], &status_msg))
UartNewStatusMsgReceivedCallback(status_msg);
}
}
void TracerBase::NewStatusMsgReceivedCallback(const TracerMessage &msg)
{
void TracerBase::NewStatusMsgReceivedCallback(const AgxMessage &msg) {
// std::cout << "new status msg received" << std::endl;
std::lock_guard<std::mutex> guard(tracer_state_mutex_);
UpdateTracerState(msg, tracer_state_);
}
void TracerBase::UartNewStatusMsgReceivedCallback(const UartTracerMessage &msg)
{
// std::cout << "new status msg received" << std::endl;
std::lock_guard<std::mutex> guard(tracer_state_mutex_);
UartUpdateTracerState(msg, uart_tracer_state_);
}
void TracerBase::UpdateTracerState(const TracerMessage &status_msg, TracerState &state)
{
switch (status_msg.type)
{
case TracerMotionStatusMsg:
{
// std::cout << "motion control feedback received" << std::endl;
const MotionStatusMessage &msg = status_msg.body.motion_status_msg;
state.linear_velocity = static_cast<int16_t>(static_cast<uint16_t>(msg.data.status.linear_velocity.low_byte) | static_cast<uint16_t>(msg.data.status.linear_velocity.high_byte) << 8) / 1000.0;
state.angular_velocity = static_cast<int16_t>(static_cast<uint16_t>(msg.data.status.angular_velocity.low_byte) | static_cast<uint16_t>(msg.data.status.angular_velocity.high_byte) << 8) / 1000.0;
break;
}
case TracerLightStatusMsg:
{
// std::cout << "light control feedback received" << std::endl;
const LightStatusMessage &msg = status_msg.body.light_status_msg;
if (msg.data.status.light_ctrl_enable == LIGHT_DISABLE_CTRL)
state.light_control_enabled = false;
else
state.light_control_enabled = true;
state.front_light_state.mode = msg.data.status.front_light_mode;
state.front_light_state.custom_value = msg.data.status.front_light_custom;
//state.rear_light_state.mode = msg.data.status.rear_light_mode;
//state.rear_light_state.custom_value = msg.data.status.rear_light_custom;
break;
}
case TracerSystemStatusMsg:
{
// std::cout << "system status feedback received" << std::endl;
const SystemStatusMessage &msg = status_msg.body.system_status_msg;
state.control_mode = msg.data.status.control_mode;
state.base_state = msg.data.status.base_state;
state.battery_voltage = (static_cast<uint16_t>(msg.data.status.battery_voltage.low_byte) | static_cast<uint16_t>(msg.data.status.battery_voltage.high_byte) << 8) / 10.0;
state.fault_code = msg.data.status.fault_code;
break;
}
case TracerMotorDriverStatusMsg:
{
// std::cout << "motor 1 driver feedback received" << std::endl;
//const MotorDriverStatusMessage &msg = status_msg.body.motor_driver_status_msg;
const MotorHeightSpeedStatusMessage &msg = status_msg.body.motor_heigh_speed_msg;
for (int i = 0; i < 2; ++i)
{
//state.motor_states[status_msg.body.motor_driver_status_msg.motor_id].current = (static_cast<uint16_t>(msg.data.status.current.low_byte) | static_cast<uint16_t>(msg.data.status.current.high_byte) << 8) / 10.0;
state.motor_states[status_msg.body.motor_heigh_speed_msg.motor_id].rpm = static_cast<int16_t>(static_cast<uint16_t>(msg.data.status.rpm.low_byte) | static_cast<uint16_t>(msg.data.status.rpm.high_byte) << 8);
//state.motor_states[status_msg.body.motor_driver_status_msg.motor_id].temperature = msg.data.status.temperature;
}
break;
}
case TracerOdometerMsg:
{
// std::cout << "Odometer msg feedback received" << std::endl;
const OdometerMessage &msg = status_msg.body.odom_msg;
state.right_odomter=static_cast<int32_t>((static_cast<uint32_t>(msg.data.status.rightodometer.lowest))|(static_cast<uint32_t>(msg.data.status.rightodometer.sec_lowest)<<8)|(static_cast<uint32_t>(msg.data.status.rightodometer.sec_highest)<<16)|(static_cast<uint32_t>(msg.data.status.rightodometer.highest)<<24));
state.left_odomter=static_cast<int32_t>((static_cast<uint32_t>(msg.data.status.leftodometer.lowest))|(static_cast<uint32_t>(msg.data.status.leftodometer.sec_lowest)<<8)|(static_cast<uint32_t>(msg.data.status.leftodometer.sec_highest)<<16)|(static_cast<uint32_t>(msg.data.status.leftodometer.highest)<<24));
}
}
}
void TracerBase::UartUpdateTracerState(const UartTracerMessage &status_msg, UartTracerState &state)
{
void TracerBase::UpdateTracerState(const AgxMessage &status_msg,
TracerState &state) {
switch (status_msg.type) {
case UartTracerMotionStatusMsg: {
case AgxMsgSystemState: {
// std::cout << "system status feedback received" << std::endl;
const SystemStateMessage &msg = status_msg.body.system_state_msg;
state.control_mode = msg.state.control_mode;
state.base_state = msg.state.vehicle_state;
state.battery_voltage =
(static_cast<uint16_t>(msg.state.battery_voltage.low_byte) |
static_cast<uint16_t>(msg.state.battery_voltage.high_byte) << 8) /
10.0;
state.fault_code = msg.state.fault_code;
break;
}
case AgxMsgMotionState: {
// std::cout << "motion control feedback received" << std::endl;
const UartMotionStatusMessage &msg = status_msg.body.motion_status_msg;
const MotionStateMessage &msg = status_msg.body.motion_state_msg;
state.linear_velocity =
static_cast<int16_t>(
static_cast<uint16_t>(msg.data.status.linear_velocity.low_byte) |
static_cast<uint16_t>(msg.data.status.linear_velocity.high_byte)
<< 8) /
static_cast<uint16_t>(msg.state.linear_velocity.low_byte) |
static_cast<uint16_t>(msg.state.linear_velocity.high_byte) << 8) /
1000.0;
state.angular_velocity =
static_cast<int16_t>(
static_cast<uint16_t>(msg.data.status.angular_velocity.low_byte) |
static_cast<uint16_t>(msg.data.status.angular_velocity.high_byte)
static_cast<uint16_t>(msg.state.angular_velocity.low_byte) |
static_cast<uint16_t>(msg.state.angular_velocity.high_byte)
<< 8) /
1000.0;
break;
}
case UartTracerLightStatusMsg: {
case AgxMsgLightState: {
// std::cout << "light control feedback received" << std::endl;
const UartLightStatusMessage &msg = status_msg.body.light_status_msg;
if (msg.data.status.light_ctrl_enable == LIGHT_DISABLE_CTRL)
const LightStateMessage &msg = status_msg.body.light_state_msg;
if (msg.state.light_ctrl_enabled == LIGHT_CTRL_DISABLE)
state.light_control_enabled = false;
else
state.light_control_enabled = true;
state.front_light_state.mode = msg.data.status.front_light_mode;
state.front_light_state.custom_value = msg.data.status.front_light_custom;
state.rear_light_state.mode = msg.data.status.rear_light_mode;
state.rear_light_state.custom_value = msg.data.status.rear_light_custom;
state.front_light_state.mode = msg.state.front_light_mode;
state.front_light_state.custom_value = msg.state.front_light_custom;
break;
}
case UartTracerSystemStatusMsg: {
// std::cout << "system status feedback received" << std::endl;
const UartSystemStatusMessage &msg = status_msg.body.system_status_msg;
state.control_mode = msg.data.status.control_mode;
state.base_state = msg.data.status.base_state;
state.battery_voltage =
(static_cast<uint16_t>(msg.data.status.battery_voltage.low_byte) |
static_cast<uint16_t>(msg.data.status.battery_voltage.high_byte)
case AgxMsgActuatorHSState: {
// std::cout << "actuator hs feedback received" << std::endl;
const ActuatorHSStateMessage &msg = status_msg.body.actuator_hs_state_msg;
state.actuator_states[msg.motor_id].motor_current =
(static_cast<uint16_t>(msg.data.state.current.low_byte) |
static_cast<uint16_t>(msg.data.state.current.high_byte) << 8) /
10.0;
state.actuator_states[msg.motor_id].motor_rpm = static_cast<int16_t>(
static_cast<uint16_t>(msg.data.state.rpm.low_byte) |
static_cast<uint16_t>(msg.data.state.rpm.high_byte) << 8);
state.actuator_states[msg.motor_id].motor_pulses = static_cast<int16_t>(
static_cast<uint16_t>(msg.data.state.pulse_count.low_byte) |
static_cast<uint16_t>(msg.data.state.pulse_count.high_byte) << 8);
break;
}
case AgxMsgActuatorLSState: {
// std::cout << "actuator ls feedback received" << std::endl;
const ActuatorLSStateMessage &msg = status_msg.body.actuator_ls_state_msg;
for (int i = 0; i < 2; ++i) {
state.actuator_states[msg.motor_id].driver_voltage =
(static_cast<uint16_t>(msg.data.state.driver_voltage.low_byte) |
static_cast<uint16_t>(msg.data.state.driver_voltage.high_byte)
<< 8) /
10.0;
state.fault_code =
(static_cast<uint16_t>(msg.data.status.fault_code.low_byte) |
static_cast<uint16_t>(msg.data.status.fault_code.high_byte) << 8);
break;
}
case UartTracerMotorDriverStatusMsg: {
// std::cout << "motor 1 driver feedback received" << std::endl;
const UartMotorDriverStatusMessage &msg =
status_msg.body.motor_driver_status_msg;
for (int i = 0; i < UartTracerState::motor_num; ++i) {
state.motor_states[status_msg.body.motor_driver_status_msg.motor_id]
.current =
(static_cast<uint16_t>(msg.data.status.current.low_byte) |
static_cast<uint16_t>(msg.data.status.current.high_byte) << 8) /
10.0;
state.motor_states[status_msg.body.motor_driver_status_msg.motor_id]
.rpm = static_cast<int16_t>(
static_cast<uint16_t>(msg.data.status.rpm.low_byte) |
static_cast<uint16_t>(msg.data.status.rpm.high_byte) << 8);
state.motor_states[status_msg.body.motor_driver_status_msg.motor_id]
.temperature = msg.data.status.temperature;
state.actuator_states[msg.motor_id]
.driver_temperature = static_cast<int16_t>(
static_cast<uint16_t>(msg.data.state.driver_temperature.low_byte) |
static_cast<uint16_t>(msg.data.state.driver_temperature.high_byte)
<< 8);
state.actuator_states[msg.motor_id].motor_temperature =
msg.data.state.motor_temperature;
state.actuator_states[msg.motor_id].driver_state =
msg.data.state.driver_state;
}
break;
}
default:break;
case AgxMsgOdometry: {
// std::cout << "Odometer msg feedback received" << std::endl;
const OdometryMessage &msg = status_msg.body.odometry_msg;
state.right_odometry = static_cast<int32_t>(
(static_cast<uint32_t>(msg.state.right_wheel.lsb)) |
(static_cast<uint32_t>(msg.state.right_wheel.low_byte) << 8) |
(static_cast<uint32_t>(msg.state.right_wheel.high_byte) << 16) |
(static_cast<uint32_t>(msg.state.right_wheel.msb) << 24));
state.left_odometry = static_cast<int32_t>(
(static_cast<uint32_t>(msg.state.left_wheel.lsb)) |
(static_cast<uint32_t>(msg.state.left_wheel.low_byte) << 8) |
(static_cast<uint32_t>(msg.state.left_wheel.high_byte) << 16) |
(static_cast<uint32_t>(msg.state.left_wheel.msb) << 24));
}
}
}
} // namespace westonrobot

View File

@@ -1,140 +0,0 @@
/*
* tracer_can_parser.c
*
* Created on: Apr 14, 2020 10:35
* Description:
*
* Copyright (c) 2020 Ruixiang Du (rdu)
*/
#include "ugv_sdk/tracer/tracer_can_parser.h"
#include "string.h"
static void EncodeTracerMotionControlMsgToCAN(const MotionCmdMessage *msg, struct can_frame *tx_frame);
static void EncodeTracerModeControlMsgToCAN(const ModSelectMessage *msg, struct can_frame *tx_frame);
bool DecodeTracerMsgFromCAN(const struct can_frame *rx_frame, TracerMessage *msg)
{
msg->type = TracerMsgNone;
switch (rx_frame->can_id)
{
// in the current implementation, both MsgType and can_frame include 8 * uint8_t
case CAN_MSG_MOTION_STATUS_ID:
{
msg->type = TracerMotionStatusMsg;
memcpy(msg->body.motion_status_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_SYSTEM_STATUS_STATUS_ID:
{
msg->type = TracerSystemStatusMsg;
memcpy(msg->body.system_status_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR1_DRIVER_STATUS_ID:
{
msg->type = TracerMotorDriverStatusMsg;
msg->body.motor_driver_status_msg.motor_id = TRACER_MOTOR1_ID;
msg->body.motor_heigh_speed_msg.motor_id=TRACER_MOTOR1_ID;
memcpy(msg->body.motor_driver_status_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
memcpy(msg->body.motor_heigh_speed_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_MOTOR2_DRIVER_STATUS_ID:
{
msg->type = TracerMotorDriverStatusMsg;
msg->body.motor_driver_status_msg.motor_id = TRACER_MOTOR2_ID;
msg->body.motor_heigh_speed_msg.motor_id = TRACER_MOTOR2_ID;
memcpy(msg->body.motor_driver_status_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
memcpy(msg->body.motor_heigh_speed_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
// in the current implementation, both MsgType and can_frame include 8 * uint8_t
case CAN_MSG_MOTION_CMD_ID:
{
msg->type = TracerMotionCmdMsg;
memcpy(msg->body.motion_cmd_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
case CAN_MSG_ODOMETER_ID:
{
msg->type = TracerOdometerMsg;
memcpy(msg->body.odom_msg.data.raw, rx_frame->data, rx_frame->can_dlc * sizeof(uint8_t));
break;
}
default:
break;
}
return true;
}
void EncodeTracerMsgToCAN(const TracerMessage *msg, struct can_frame *tx_frame)
{
switch (msg->type)
{
// in the current implementation, both MsgType and can_frame include 8 * uint8_t
case TracerMotionStatusMsg:
{
tx_frame->can_id = CAN_MSG_MOTION_STATUS_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.motion_status_msg.data.raw, tx_frame->can_dlc);
break;
}
case TracerSystemStatusMsg:
{
tx_frame->can_id = CAN_MSG_SYSTEM_STATUS_STATUS_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.system_status_msg.data.raw, tx_frame->can_dlc);
break;
}
case TracerMotorDriverStatusMsg:
{
if (msg->body.motor_driver_status_msg.motor_id == TRACER_MOTOR1_ID)
tx_frame->can_id = CAN_MSG_MOTOR1_DRIVER_STATUS_ID;
else if (msg->body.motor_driver_status_msg.motor_id == TRACER_MOTOR2_ID)
tx_frame->can_id = CAN_MSG_MOTOR2_DRIVER_STATUS_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->body.motor_driver_status_msg.data.raw, tx_frame->can_dlc);
break;
}
case TracerMotionCmdMsg:
{
EncodeTracerMotionControlMsgToCAN(&(msg->body.motion_cmd_msg), tx_frame);
break;
}
case TracerModeControlMsg:
{
EncodeTracerModeControlMsgToCAN(&(msg->body.mode_cmd_msg), tx_frame);
break;
}
default:
break;
}
//tx_frame->data[7] = CalcTracerCANChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}
void EncodeTracerMotionControlMsgToCAN(const MotionCmdMessage *msg, struct can_frame *tx_frame)
{
tx_frame->can_id = CAN_MSG_MOTION_CMD_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->data.raw, tx_frame->can_dlc);
//tx_frame->data[7] = CalcTracerCANChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}
void EncodeTracerModeControlMsgToCAN(const ModSelectMessage *msg, struct can_frame *tx_frame)
{
tx_frame->can_id = CAN_MSG_COMTROL_MODE_ID;
tx_frame->can_dlc = 8;
memcpy(tx_frame->data, msg->data.raw, tx_frame->can_dlc);
//tx_frame->data[7] = CalcTracerCANChecksum(tx_frame->can_id, tx_frame->data, tx_frame->can_dlc);
}
uint8_t CalcTracerCANChecksum(uint16_t id, uint8_t *data, uint8_t dlc)
{
uint8_t checksum = 0x00;
checksum = (uint8_t)(id & 0x00ff) + (uint8_t)(id >> 8) + dlc;
for (int i = 0; i < (dlc - 1); ++i)
checksum += data[i];
return checksum;
}

View File

@@ -1,587 +0,0 @@
#include "ugv_sdk/tracer/tracer_uart_parser.h"
// #define USE_XOR_CHECKSUM
// #define PRINT_CPP_DEBUG_INFO
// #define PRINT_JLINK_DEBUG_INFO
#ifdef PRINT_CPP_DEBUG_INFO
#undef PRINT_JLINK_DEBUG_INFO
#endif
#ifdef PRINT_CPP_DEBUG_INFO
#define <iostream>
#elif (defined(PRINT_JLINK_DEBUG_INFO))
#include "segger/jlink_rtt.h"
#endif
typedef enum
{
WAIT_FOR_SOF1 = 0,
WAIT_FOR_SOF2,
WAIT_FOR_FRAME_LEN,
WAIT_FOR_FRAME_TYPE,
WAIT_FOR_FRAME_ID,
WAIT_FOR_PAYLOAD,
WAIT_FOR_FRAME_COUNT,
WAIT_FOR_CHECKSUM
} TracerSerialDecodeState;
#define PAYLOAD_BUFFER_SIZE (TRACER_FRAME_SIZE * 2)
#define FRAME_SOF_LEN ((uint8_t)2)
#define FRAME_FIXED_FIELD_LEN ((uint8_t)4)
#define FRAME_SOF1 ((uint8_t)0x5a)
#define FRAME_SOF2 ((uint8_t)0xa5)
#define FRAME_TYPE_CONTROL ((uint8_t)0x55)
#define FRAME_TYPE_STATUS ((uint8_t)0xaa)
#define FRAME_NONE_ID ((uint8_t)0x00)
// frame buffer
static struct
{
uint8_t frame_id;
uint8_t frame_type;
uint8_t frame_len;
uint8_t frame_cnt;
uint8_t frame_checksum;
uint8_t internal_checksum;
uint8_t payload_buffer[PAYLOAD_BUFFER_SIZE];
size_t payload_data_pos;
} uart_parsing_data;
// statisctics
typedef struct
{
uint32_t frame_parsed;
uint32_t frame_with_wrong_checksum;
} UARTParsingStats;
static UARTParsingStats uart_parsing_stats = {.frame_parsed = true, .frame_with_wrong_checksum = 123};
// internal functions
static bool ParseChar(uint8_t c, UartTracerMessage *msg);
static uint8_t CalcBufferedFrameChecksum();
static bool ConstructStatusMessage(UartTracerMessage *msg);
static bool ConstructControlMessage(UartTracerMessage *msg);
static void EncodeMotionControlMsgToUART(const UartMotionControlMessage *msg, uint8_t *buf, uint8_t *len);
static void EncodeLightControlMsgToUART(const UartLightControlMessage *msg, uint8_t *buf, uint8_t *len);
void EncodeTracerMsgToUART(const UartTracerMessage *msg, uint8_t *buf, uint8_t *len)
{
// SOF
buf[0] = FRAME_SOF1;
buf[1] = FRAME_SOF2;
// frame len, type, ID
buf[2] = 0x0a;
buf[3] = FRAME_TYPE_STATUS;
switch (msg->type)
{
// in the current implementation, both MsgType and can_frame include 8 * uint8_t
case UartTracerMotionStatusMsg:
{
buf[4] = UART_FRAME_MOTION_STATUS_ID;
buf[5] = msg->body.motion_status_msg.data.status.linear_velocity.high_byte;
buf[6] = msg->body.motion_status_msg.data.status.linear_velocity.low_byte;
buf[7] = msg->body.motion_status_msg.data.status.angular_velocity.high_byte;
buf[8] = msg->body.motion_status_msg.data.status.angular_velocity.low_byte;
buf[9] = 0;
buf[10] = 0;
buf[11] = msg->body.motion_status_msg.data.status.count;
break;
}
case UartTracerLightStatusMsg:
{
buf[4] = UART_FRAME_LIGHT_STATUS_ID;
buf[5] = msg->body.light_status_msg.data.status.light_ctrl_enable;
buf[6] = msg->body.light_status_msg.data.status.front_light_mode;
buf[7] = msg->body.light_status_msg.data.status.front_light_custom;
buf[8] = msg->body.light_status_msg.data.status.rear_light_mode;
buf[9] = msg->body.light_status_msg.data.status.rear_light_custom;
buf[10] = 0;
buf[11] = msg->body.light_status_msg.data.status.count;
break;
}
case UartTracerSystemStatusMsg:
{
buf[4] = UART_FRAME_SYSTEM_STATUS_ID;
buf[5] = msg->body.system_status_msg.data.status.base_state;
buf[6] = msg->body.system_status_msg.data.status.control_mode;
buf[7] = msg->body.system_status_msg.data.status.battery_voltage.high_byte;
buf[8] = msg->body.system_status_msg.data.status.battery_voltage.low_byte;
buf[9] = msg->body.system_status_msg.data.status.fault_code.high_byte;
buf[10] = msg->body.system_status_msg.data.status.fault_code.low_byte;
buf[11] = msg->body.system_status_msg.data.status.count;
break;
}
case UartTracerMotorDriverStatusMsg:
{
if (msg->body.motor_driver_status_msg.motor_id == TRACER_MOTOR1_ID)
buf[4] = UART_FRAME_MOTOR1_DRIVER_STATUS_ID;
else if (msg->body.motor_driver_status_msg.motor_id == TRACER_MOTOR2_ID)
buf[4] = UART_FRAME_MOTOR2_DRIVER_STATUS_ID;
buf[5] = msg->body.motor_driver_status_msg.data.status.current.high_byte;
buf[6] = msg->body.motor_driver_status_msg.data.status.current.low_byte;
buf[7] = msg->body.motor_driver_status_msg.data.status.rpm.high_byte;
buf[8] = msg->body.motor_driver_status_msg.data.status.rpm.low_byte;
buf[9] = msg->body.motor_driver_status_msg.data.status.temperature;
buf[10] = 0;
buf[11] = msg->body.motor_driver_status_msg.data.status.count;
break;
}
case UartTracerMotionControlMsg:
{
EncodeMotionControlMsgToUART(&(msg->body.motion_control_msg), buf, len);
break;
}
case UartTracerLightControlMsg:
{
EncodeLightControlMsgToUART(&(msg->body.light_control_msg), buf, len);
break;
}
default:
break;
}
buf[12] = CalcTracerUARTChecksum(buf, buf[2] + FRAME_SOF_LEN);
// length: SOF + Frame + Checksum
*len = buf[2] + FRAME_SOF_LEN + 1;
}
bool DecodeTracerMsgFromUART(uint8_t c, UartTracerMessage *msg)
{
static UartTracerMessage decoded_msg;
bool result = ParseChar(c, &decoded_msg);
if (result)
*msg = decoded_msg;
return result;
}
void EncodeMotionControlMsgToUART(const UartMotionControlMessage *msg, uint8_t *buf, uint8_t *len)
{
// SOF
buf[0] = FRAME_SOF1;
buf[1] = FRAME_SOF2;
// frame len, type, ID
buf[2] = 0x0a;
buf[3] = FRAME_TYPE_CONTROL;
buf[4] = UART_FRAME_MOTION_CONTROL_ID;
// frame payload
buf[5] = msg->data.cmd.control_mode;
buf[6] = msg->data.cmd.fault_clear_flag;
buf[7] = msg->data.cmd.linear_velocity_cmd;
buf[8] = msg->data.cmd.angular_velocity_cmd;
buf[9] = 0x00;
buf[10] = 0x00;
// frame count, checksum
buf[11] = msg->data.cmd.count;
buf[12] = CalcTracerUARTChecksum(buf, buf[2] + FRAME_SOF_LEN);
// length: SOF + Frame + Checksum
*len = buf[2] + FRAME_SOF_LEN + 1;
}
void EncodeLightControlMsgToUART(const UartLightControlMessage *msg, uint8_t *buf, uint8_t *len)
{
// SOF
buf[0] = FRAME_SOF1;
buf[1] = FRAME_SOF2;
// frame len, type, ID
buf[2] = 0x0a;
buf[3] = FRAME_TYPE_CONTROL;
buf[4] = UART_FRAME_LIGHT_CONTROL_ID;
// frame payload
buf[5] = msg->data.cmd.light_ctrl_enable;
buf[6] = msg->data.cmd.front_light_mode;
buf[7] = msg->data.cmd.front_light_custom;
buf[8] = msg->data.cmd.rear_light_mode;
buf[9] = msg->data.cmd.rear_light_custom;
buf[10] = 0x00;
// frame count, checksum
buf[11] = msg->data.cmd.count;
buf[12] = CalcTracerUARTChecksum(buf, buf[2] + FRAME_SOF_LEN);
// length: SOF + Frame + Checksum
*len = buf[2] + FRAME_SOF_LEN + 1;
}
bool ParseChar(uint8_t c, UartTracerMessage *msg)
{
static TracerSerialDecodeState decode_state = WAIT_FOR_SOF1;
bool new_frame_parsed = false;
switch (decode_state)
{
case WAIT_FOR_SOF1:
{
if (c == FRAME_SOF1)
{
uart_parsing_data.frame_id = FRAME_NONE_ID;
uart_parsing_data.frame_type = 0;
uart_parsing_data.frame_len = 0;
uart_parsing_data.frame_cnt = 0;
uart_parsing_data.frame_checksum = 0;
uart_parsing_data.internal_checksum = 0;
uart_parsing_data.payload_data_pos = 0;
memset(uart_parsing_data.payload_buffer, 0, PAYLOAD_BUFFER_SIZE);
decode_state = WAIT_FOR_SOF2;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "found sof1" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "found sof1\n");
#endif
}
break;
}
case WAIT_FOR_SOF2:
{
if (c == FRAME_SOF2)
{
decode_state = WAIT_FOR_FRAME_LEN;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "found sof2" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "found sof2\n");
#endif
}
else
{
decode_state = WAIT_FOR_SOF1;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "failed to find sof2" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "failed to find sof2\n");
#endif
}
break;
}
case WAIT_FOR_FRAME_LEN:
{
uart_parsing_data.frame_len = c;
decode_state = WAIT_FOR_FRAME_TYPE;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "frame len: " << std::hex << static_cast<int>(frame_len) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkRTTPrintf(0, "frame len: %d\n", frame_len);
#endif
break;
}
case WAIT_FOR_FRAME_TYPE:
{
switch (c)
{
case FRAME_TYPE_CONTROL:
{
uart_parsing_data.frame_type = FRAME_TYPE_CONTROL;
decode_state = WAIT_FOR_FRAME_ID;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "control type frame received" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "control type frame received\n");
#endif
break;
}
case FRAME_TYPE_STATUS:
{
uart_parsing_data.frame_type = FRAME_TYPE_STATUS;
decode_state = WAIT_FOR_FRAME_ID;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "status type frame received" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "status type frame received\n");
#endif
break;
}
default:
{
#ifdef PRINT_CPP_DEBUG_INFO
std::cerr << "ERROR: Not expecting frame of a type other than FRAME_TYPE_STATUS" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "ERROR: Not expecting frame of a type other than FRAME_TYPE_STATUS\n");
#endif
decode_state = WAIT_FOR_SOF1;
}
}
break;
}
case WAIT_FOR_FRAME_ID:
{
switch (c)
{
case UART_FRAME_SYSTEM_STATUS_ID:
case UART_FRAME_MOTION_STATUS_ID:
case UART_FRAME_MOTOR1_DRIVER_STATUS_ID:
case UART_FRAME_MOTOR2_DRIVER_STATUS_ID:
case UART_FRAME_LIGHT_STATUS_ID:
{
uart_parsing_data.frame_id = c;
decode_state = WAIT_FOR_PAYLOAD;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "frame id: " << std::hex << static_cast<int>(frame_id) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkRTTPrintf(0, "frame id: %d\n", frame_id);
#endif
break;
}
default:
{
#ifdef PRINT_CPP_DEBUG_INFO
std::cerr << "ERROR: Unknown frame id" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "ERROR: Unknown frame id\n");
#endif
decode_state = WAIT_FOR_SOF1;
}
}
break;
}
case WAIT_FOR_PAYLOAD:
{
uart_parsing_data.payload_buffer[uart_parsing_data.payload_data_pos++] = c;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "1 byte added: " << std::hex << static_cast<int>(c) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkRTTPrintf(0, "1 byte added: %d\n", c);
#endif
if (uart_parsing_data.payload_data_pos == (uart_parsing_data.frame_len - FRAME_FIXED_FIELD_LEN))
decode_state = WAIT_FOR_FRAME_COUNT;
break;
}
case WAIT_FOR_FRAME_COUNT:
{
uart_parsing_data.frame_cnt = c;
decode_state = WAIT_FOR_CHECKSUM;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "frame count: " << std::hex << static_cast<int>(frame_cnt) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkRTTPrintf(0, "frame count: %d\n", frame_cnt);
#endif
break;
}
case WAIT_FOR_CHECKSUM:
{
uart_parsing_data.frame_checksum = c;
uart_parsing_data.internal_checksum = CalcBufferedFrameChecksum();
new_frame_parsed = true;
decode_state = WAIT_FOR_SOF1;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "--- frame checksum: " << std::hex << static_cast<int>(frame_checksum) << std::dec << std::endl;
std::cout << "--- internal frame checksum: " << std::hex << static_cast<int>(internal_checksum) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkRTTPrintf(0, "--- frame checksum: : %d\n", frame_checksum);
JLinkRTTPrintf(0, "--- internal frame checksum: : %d\n", internal_checksum);
#endif
break;
}
default:
break;
}
if (new_frame_parsed)
{
if (uart_parsing_data.frame_checksum == uart_parsing_data.internal_checksum)
{
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "checksum correct" << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "checksum correct\n");
#endif
if (uart_parsing_data.frame_type == FRAME_TYPE_STATUS)
ConstructStatusMessage(msg);
else if (uart_parsing_data.frame_type == FRAME_TYPE_CONTROL)
ConstructControlMessage(msg);
++uart_parsing_stats.frame_parsed;
}
else
{
++uart_parsing_stats.frame_with_wrong_checksum;
#ifdef PRINT_CPP_DEBUG_INFO
std::cout << "checksum is NOT correct" << std::endl;
std::cout << std::hex << static_cast<int>(frame_id) << " , " << static_cast<int>(frame_len) << " , " << static_cast<int>(frame_cnt) << " , " << static_cast<int>(frame_checksum) << " : " << std::dec << std::endl;
std::cout << "payload: ";
for (int i = 0; i < payload_data_pos; ++i)
std::cout << std::hex << static_cast<int>(payload_buffer[i]) << std::dec << " ";
std::cout << std::endl;
std::cout << "--- frame checksum: " << std::hex << static_cast<int>(frame_checksum) << std::dec << std::endl;
std::cout << "--- internal frame checksum: " << std::hex << static_cast<int>(internal_checksum) << std::dec << std::endl;
#elif (defined(PRINT_JLINK_DEBUG_INFO))
JLinkWriteString(0, "checksum is NOT correct\n");
#endif
}
}
return new_frame_parsed;
}
bool ConstructControlMessage(UartTracerMessage *msg)
{
if (msg == NULL)
return false;
switch (uart_parsing_data.frame_id)
{
case UART_FRAME_MOTION_CONTROL_ID:
{
msg->type = UartTracerMotionControlMsg;
msg->body.motion_control_msg.data.cmd.control_mode = uart_parsing_data.payload_buffer[0];
msg->body.motion_control_msg.data.cmd.fault_clear_flag = uart_parsing_data.payload_buffer[1];
msg->body.motion_control_msg.data.cmd.linear_velocity_cmd = uart_parsing_data.payload_buffer[2];
msg->body.motion_control_msg.data.cmd.angular_velocity_cmd = uart_parsing_data.payload_buffer[3];
msg->body.motion_control_msg.data.cmd.reserved0 = uart_parsing_data.payload_buffer[4];
msg->body.motion_control_msg.data.cmd.reserved1 = uart_parsing_data.payload_buffer[5];
msg->body.motion_control_msg.data.cmd.count = uart_parsing_data.frame_cnt;
msg->body.motion_control_msg.data.cmd.checksum = uart_parsing_data.frame_checksum;
break;
}
case UART_FRAME_LIGHT_CONTROL_ID:
{
msg->type = UartTracerLightControlMsg;
msg->body.light_control_msg.data.cmd.light_ctrl_enable = uart_parsing_data.payload_buffer[0];
msg->body.light_control_msg.data.cmd.front_light_mode = uart_parsing_data.payload_buffer[1];
msg->body.light_control_msg.data.cmd.front_light_custom = uart_parsing_data.payload_buffer[2];
msg->body.light_control_msg.data.cmd.rear_light_mode = uart_parsing_data.payload_buffer[3];
msg->body.light_control_msg.data.cmd.rear_light_custom = uart_parsing_data.payload_buffer[4];
msg->body.light_control_msg.data.cmd.reserved0 = uart_parsing_data.payload_buffer[5];
msg->body.light_control_msg.data.cmd.count = uart_parsing_data.frame_cnt;
msg->body.light_control_msg.data.cmd.checksum = uart_parsing_data.frame_checksum;
break;
}
}
return true;
}
bool ConstructStatusMessage(UartTracerMessage *msg)
{
if (msg == NULL)
return false;
switch (uart_parsing_data.frame_id)
{
case UART_FRAME_SYSTEM_STATUS_ID:
{
msg->type = UartTracerSystemStatusMsg;
msg->body.system_status_msg.data.status.base_state = uart_parsing_data.payload_buffer[0];
msg->body.system_status_msg.data.status.control_mode = uart_parsing_data.payload_buffer[1];
msg->body.system_status_msg.data.status.battery_voltage.high_byte = uart_parsing_data.payload_buffer[2];
msg->body.system_status_msg.data.status.battery_voltage.low_byte = uart_parsing_data.payload_buffer[3];
msg->body.system_status_msg.data.status.fault_code.high_byte = uart_parsing_data.payload_buffer[4];
msg->body.system_status_msg.data.status.fault_code.low_byte = uart_parsing_data.payload_buffer[5];
msg->body.system_status_msg.data.status.count = uart_parsing_data.frame_cnt;
msg->body.system_status_msg.data.status.checksum = uart_parsing_data.frame_checksum;
break;
}
case UART_FRAME_MOTION_STATUS_ID:
{
msg->type = UartTracerMotionStatusMsg;
msg->body.motion_status_msg.data.status.linear_velocity.high_byte = uart_parsing_data.payload_buffer[0];
msg->body.motion_status_msg.data.status.linear_velocity.low_byte = uart_parsing_data.payload_buffer[1];
msg->body.motion_status_msg.data.status.angular_velocity.high_byte = uart_parsing_data.payload_buffer[2];
msg->body.motion_status_msg.data.status.angular_velocity.low_byte = uart_parsing_data.payload_buffer[3];
msg->body.motion_status_msg.data.status.reserved0 = 0x00;
msg->body.motion_status_msg.data.status.reserved0 = 0x00;
msg->body.motion_status_msg.data.status.count = uart_parsing_data.frame_cnt;
msg->body.motion_status_msg.data.status.checksum = uart_parsing_data.frame_checksum;
break;
}
case UART_FRAME_MOTOR1_DRIVER_STATUS_ID:
{
msg->type = UartTracerMotorDriverStatusMsg;
msg->body.motor_driver_status_msg.motor_id = TRACER_MOTOR1_ID;
msg->body.motor_driver_status_msg.data.status.current.high_byte = uart_parsing_data.payload_buffer[0];
msg->body.motor_driver_status_msg.data.status.current.low_byte = uart_parsing_data.payload_buffer[1];
msg->body.motor_driver_status_msg.data.status.rpm.high_byte = uart_parsing_data.payload_buffer[2];
msg->body.motor_driver_status_msg.data.status.rpm.low_byte = uart_parsing_data.payload_buffer[3];
msg->body.motor_driver_status_msg.data.status.temperature = uart_parsing_data.payload_buffer[4];
msg->body.motor_driver_status_msg.data.status.reserved0 = 0x00;
msg->body.motor_driver_status_msg.data.status.count = uart_parsing_data.frame_cnt;
msg->body.motor_driver_status_msg.data.status.checksum = uart_parsing_data.frame_checksum;
break;
}
case UART_FRAME_MOTOR2_DRIVER_STATUS_ID:
{
msg->type = UartTracerMotorDriverStatusMsg;
msg->body.motor_driver_status_msg.motor_id = TRACER_MOTOR2_ID;
msg->body.motor_driver_status_msg.data.status.current.high_byte = uart_parsing_data.payload_buffer[0];
msg->body.motor_driver_status_msg.data.status.current.low_byte = uart_parsing_data.payload_buffer[1];
msg->body.motor_driver_status_msg.data.status.rpm.high_byte = uart_parsing_data.payload_buffer[2];
msg->body.motor_driver_status_msg.data.status.rpm.low_byte = uart_parsing_data.payload_buffer[3];
msg->body.motor_driver_status_msg.data.status.temperature = uart_parsing_data.payload_buffer[4];
msg->body.motor_driver_status_msg.data.status.reserved0 = 0x00;
msg->body.motor_driver_status_msg.data.status.count = uart_parsing_data.frame_cnt;
msg->body.motor_driver_status_msg.data.status.checksum = uart_parsing_data.frame_checksum;
break;
}
case UART_FRAME_LIGHT_STATUS_ID:
{
msg->type = UartTracerLightStatusMsg;
msg->body.light_status_msg.data.status.light_ctrl_enable = uart_parsing_data.payload_buffer[0];
msg->body.light_status_msg.data.status.front_light_mode = uart_parsing_data.payload_buffer[1];
msg->body.light_status_msg.data.status.front_light_custom = uart_parsing_data.payload_buffer[2];
msg->body.light_status_msg.data.status.rear_light_mode = uart_parsing_data.payload_buffer[3];
msg->body.light_status_msg.data.status.rear_light_custom = uart_parsing_data.payload_buffer[4];
msg->body.light_status_msg.data.status.reserved0 = 0x00;
msg->body.light_status_msg.data.status.count = uart_parsing_data.frame_cnt;
msg->body.light_status_msg.data.status.checksum = uart_parsing_data.frame_checksum;
break;
}
}
return true;
}
uint8_t CalcTracerUARTChecksum(uint8_t *buf, uint8_t len)
{
uint8_t checksum = 0;
#ifdef USE_XOR_CHECKSUM
for (int i = 0; i < len; ++i)
checksum ^= buf[i];
#else
for (int i = 0; i < len; ++i)
checksum += buf[i];
#endif
return checksum;
}
uint8_t CalcBufferedFrameChecksum()
{
uint8_t checksum = 0x00;
#ifdef USE_XOR_CHECKSUM
checksum ^= FRAME_SOF1;
checksum ^= FRAME_SOF2;
checksum ^= uart_parsing_data.frame_len;
checksum ^= uart_parsing_data.frame_type;
checksum ^= uart_parsing_data.frame_id;
for (size_t i = 0; i < uart_parsing_data.payload_data_pos; ++i)
checksum ^= uart_parsing_data.payload_buffer[i];
checksum ^= uart_parsing_data.frame_cnt;
#else
checksum += FRAME_SOF1;
checksum += FRAME_SOF2;
checksum += uart_parsing_data.frame_len;
checksum += uart_parsing_data.frame_type;
checksum += uart_parsing_data.frame_id;
for (size_t i = 0; i < uart_parsing_data.payload_data_pos; ++i)
checksum += uart_parsing_data.payload_buffer[i];
checksum += uart_parsing_data.frame_cnt;
#endif
return checksum;
}