mirror of
https://github.com/MAPIRlab/rf2o_laser_odometry.git
synced 2023-04-06 19:28:55 +08:00
181 lines
5.0 KiB
C++
181 lines
5.0 KiB
C++
/** ****************************************************************************************
|
|
* This node presents a fast and precise method to estimate the planar motion of a lidar
|
|
* from consecutive range scans. It is very useful for the estimation of the robot odometry from
|
|
* 2D laser range measurements.
|
|
* This module is developed for mobile robots with innacurate or inexistent built-in odometry.
|
|
* It allows the estimation of a precise odometry with low computational cost.
|
|
* For more information, please refer to:
|
|
*
|
|
* Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach. ICRA'16.
|
|
* Available at: http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/217
|
|
*
|
|
* Maintainer: Javier G. Monroy
|
|
* MAPIR group: http://mapir.isa.uma.es/
|
|
*
|
|
* Modifications: Jeremie Deray
|
|
******************************************************************************************** */
|
|
|
|
#ifndef CLaserOdometry2D_H
|
|
#define CLaserOdometry2D_H
|
|
|
|
// std header
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
// ROS headers
|
|
#include <ros/ros.h>
|
|
#include <nav_msgs/Odometry.h>
|
|
#include <sensor_msgs/LaserScan.h>
|
|
|
|
// Eigen headers
|
|
#include <Eigen/Dense>
|
|
#include <Eigen/Geometry>
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
namespace rf2o {
|
|
|
|
template <typename T>
|
|
inline T sign(const T x) { return x<T(0) ? -1:1; }
|
|
|
|
template <typename Derived>
|
|
inline typename Eigen::MatrixBase<Derived>::Scalar
|
|
getYaw(const Eigen::MatrixBase<Derived>& r)
|
|
{
|
|
return std::atan2( r(1, 0), r(0, 0) );
|
|
}
|
|
|
|
template<typename T>
|
|
inline Eigen::Matrix<T, 3, 3> matrixRollPitchYaw(const T roll,
|
|
const T pitch,
|
|
const T yaw)
|
|
{
|
|
const Eigen::AngleAxis<T> ax = Eigen::AngleAxis<T>(roll, Eigen::Matrix<T, 3, 1>::UnitX());
|
|
const Eigen::AngleAxis<T> ay = Eigen::AngleAxis<T>(pitch, Eigen::Matrix<T, 3, 1>::UnitY());
|
|
const Eigen::AngleAxis<T> az = Eigen::AngleAxis<T>(yaw, Eigen::Matrix<T, 3, 1>::UnitZ());
|
|
|
|
return (az * ay * ax).toRotationMatrix().matrix();
|
|
}
|
|
|
|
template<typename T>
|
|
inline Eigen::Matrix<T, 3, 3> matrixYaw(const T yaw)
|
|
{
|
|
return matrixRollPitchYaw<T>(0, 0, yaw);
|
|
}
|
|
|
|
class CLaserOdometry2D
|
|
{
|
|
public:
|
|
|
|
using Scalar = float;
|
|
|
|
using Pose2d = Eigen::Isometry2d;
|
|
using Pose3d = Eigen::Isometry3d;
|
|
using MatrixS31 = Eigen::Matrix<Scalar, 3, 1>;
|
|
using IncrementCov = Eigen::Matrix<Scalar, 3, 3>;
|
|
|
|
CLaserOdometry2D();
|
|
virtual ~CLaserOdometry2D() = default;
|
|
|
|
void init(const sensor_msgs::LaserScan& scan,
|
|
const geometry_msgs::Pose& initial_robot_pose);
|
|
|
|
bool is_initialized();
|
|
|
|
bool odometryCalculation(const sensor_msgs::LaserScan& scan);
|
|
|
|
void setLaserPose(const Pose3d& laser_pose);
|
|
|
|
const Pose3d& getIncrement() const;
|
|
|
|
const IncrementCov& getIncrementCovariance() const;
|
|
|
|
Pose3d& getPose();
|
|
const Pose3d& getPose() const;
|
|
|
|
protected:
|
|
|
|
bool verbose, module_initialized, first_laser_scan;
|
|
|
|
// Internal Data
|
|
std::vector<Eigen::MatrixXf> range;
|
|
std::vector<Eigen::MatrixXf> range_old;
|
|
std::vector<Eigen::MatrixXf> range_inter;
|
|
std::vector<Eigen::MatrixXf> range_warped;
|
|
std::vector<Eigen::MatrixXf> xx;
|
|
std::vector<Eigen::MatrixXf> xx_inter;
|
|
std::vector<Eigen::MatrixXf> xx_old;
|
|
std::vector<Eigen::MatrixXf> xx_warped;
|
|
std::vector<Eigen::MatrixXf> yy;
|
|
std::vector<Eigen::MatrixXf> yy_inter;
|
|
std::vector<Eigen::MatrixXf> yy_old;
|
|
std::vector<Eigen::MatrixXf> yy_warped;
|
|
std::vector<Eigen::MatrixXf> transformations;
|
|
|
|
Eigen::MatrixXf range_wf;
|
|
Eigen::MatrixXf dtita;
|
|
Eigen::MatrixXf dt;
|
|
Eigen::MatrixXf rtita;
|
|
Eigen::MatrixXf normx, normy, norm_ang;
|
|
Eigen::MatrixXf weights;
|
|
Eigen::MatrixXi null;
|
|
|
|
Eigen::MatrixXf A,Aw;
|
|
Eigen::MatrixXf B,Bw;
|
|
|
|
MatrixS31 Var; //3 unknowns: vx, vy, w
|
|
IncrementCov cov_odo;
|
|
|
|
//std::string LaserVarName; //Name of the topic containing the scan lasers \laser_scan
|
|
float fps; //In Hz
|
|
float fovh; //Horizontal FOV
|
|
unsigned int cols;
|
|
unsigned int cols_i;
|
|
unsigned int width;
|
|
unsigned int ctf_levels;
|
|
unsigned int image_level, level;
|
|
unsigned int num_valid_range;
|
|
unsigned int iter_irls;
|
|
float g_mask[5];
|
|
|
|
double lin_speed, ang_speed;
|
|
|
|
ros::WallDuration m_runtime;
|
|
ros::Time last_odom_time, current_scan_time;
|
|
|
|
MatrixS31 kai_abs_;
|
|
MatrixS31 kai_loc_;
|
|
MatrixS31 kai_loc_old_;
|
|
MatrixS31 kai_loc_level_;
|
|
|
|
Pose3d last_increment_;
|
|
Pose3d laser_pose_on_robot_;
|
|
Pose3d laser_pose_on_robot_inv_;
|
|
Pose3d laser_pose_;
|
|
Pose3d laser_oldpose_;
|
|
Pose3d robot_pose_;
|
|
Pose3d robot_oldpose_;
|
|
|
|
bool test;
|
|
std::vector<double> last_m_lin_speeds;
|
|
std::vector<double> last_m_ang_speeds;
|
|
|
|
// Methods
|
|
void createImagePyramid();
|
|
void calculateCoord();
|
|
void performWarping();
|
|
void calculaterangeDerivativesSurface();
|
|
void computeNormals();
|
|
void computeWeights();
|
|
void findNullPoints();
|
|
void solveSystemOneLevel();
|
|
void solveSystemNonLinear();
|
|
bool filterLevelSolution();
|
|
void PoseUpdate();
|
|
void Reset(const Pose3d& ini_pose/*, CObservation2DRangeScan scan*/);
|
|
};
|
|
|
|
} /* namespace rf2o */
|
|
|
|
#endif // CLaserOdometry2D_H
|