fast_lio2 released!

This commit is contained in:
xw
2021-07-04 10:17:41 -04:00
parent 6e1fa94351
commit 1087a72497
44 changed files with 7155 additions and 2973 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,82 @@
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Author: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __MEKFOM_UTIL_HPP__
#define __MEKFOM_UTIL_HPP__
#include <Eigen/Core>
#include "../mtk/src/mtkmath.hpp"
namespace esekfom {
template <typename T1, typename T2>
class is_same {
public:
operator bool() {
return false;
}
};
template<typename T1>
class is_same<T1, T1> {
public:
operator bool() {
return true;
}
};
template <typename T>
class is_double {
public:
operator bool() {
return false;
}
};
template<>
class is_double<double> {
public:
operator bool() {
return true;
}
};
template<typename T>
static T
id(const T &x)
{
return x;
}
} // namespace esekfom
#endif // __MEKFOM_UTIL_HPP__

View File

@@ -0,0 +1,229 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/build_manifold.hpp
* @brief Macro to automatically construct compound manifolds.
*
*/
#ifndef MTK_AUTOCONSTRUCT_HPP_
#define MTK_AUTOCONSTRUCT_HPP_
#include <vector>
#include <boost/preprocessor/seq.hpp>
#include <boost/preprocessor/cat.hpp>
#include <Eigen/Core>
#include "src/SubManifold.hpp"
#include "startIdx.hpp"
#ifndef PARSED_BY_DOXYGEN
//////// internals //////
#define MTK_APPLY_MACRO_ON_TUPLE(r, macro, tuple) macro tuple
#define MTK_TRANSFORM_COMMA(macro, entries) BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM_S(1, MTK_APPLY_MACRO_ON_TUPLE, macro, entries))
#define MTK_TRANSFORM(macro, entries) BOOST_PP_SEQ_FOR_EACH_R(1, MTK_APPLY_MACRO_ON_TUPLE, macro, entries)
#define MTK_CONSTRUCTOR_ARG( type, id) const type& id = type()
#define MTK_CONSTRUCTOR_COPY( type, id) id(id)
#define MTK_BOXPLUS( type, id) id.boxplus(MTK::subvector(__vec, &self::id), __scale);
#define MTK_OPLUS( type, id) id.oplus(MTK::subvector_(__vec, &self::id), __scale);
#define MTK_BOXMINUS( type, id) id.boxminus(MTK::subvector(__res, &self::id), __oth.id);
#define MTK_S2_hat( type, id) if(id.IDX == idx){id.S2_hat(res);}
#define MTK_S2_Nx_yy( type, id) if(id.IDX == idx){id.S2_Nx_yy(res);}
#define MTK_S2_Mx( type, id) if(id.IDX == idx){id.S2_Mx(res, dx);}
#define MTK_OSTREAM( type, id) << __var.id << " "
#define MTK_ISTREAM( type, id) >> __var.id
#define MTK_S2_state( type, id) if(id.TYP == 1){S2_state.push_back(std::make_pair(id.IDX, id.DIM));}
#define MTK_SO3_state( type, id) if(id.TYP == 2){(SO3_state).push_back(std::make_pair(id.IDX, id.DIM));}
#define MTK_vect_state( type, id) if(id.TYP == 0){(vect_state).push_back(std::make_pair(std::make_pair(id.IDX, id.DIM), type::DOF));}
#define MTK_SUBVARLIST(seq, S2state, SO3state) \
BOOST_PP_FOR_1( \
( \
BOOST_PP_SEQ_SIZE(seq), \
BOOST_PP_SEQ_HEAD(seq), \
BOOST_PP_SEQ_TAIL(seq) (~), \
0,\
0,\
S2state,\
SO3state ),\
MTK_ENTRIES_TEST, MTK_ENTRIES_NEXT, MTK_ENTRIES_OUTPUT)
#define MTK_PUT_TYPE(type, id, dof, dim, S2state, SO3state) \
MTK::SubManifold<type, dof, dim> id;
#define MTK_PUT_TYPE_AND_ENUM(type, id, dof, dim, S2state, SO3state) \
MTK_PUT_TYPE(type, id, dof, dim, S2state, SO3state) \
enum {DOF = type::DOF + dof}; \
enum {DIM = type::DIM+dim}; \
typedef type::scalar scalar;
#define MTK_ENTRIES_OUTPUT(r, state) MTK_ENTRIES_OUTPUT_I state
#define MTK_ENTRIES_OUTPUT_I(s, head, seq, dof, dim, S2state, SO3state) \
MTK_APPLY_MACRO_ON_TUPLE(~, \
BOOST_PP_IF(BOOST_PP_DEC(s), MTK_PUT_TYPE, MTK_PUT_TYPE_AND_ENUM), \
( BOOST_PP_TUPLE_REM_2 head, dof, dim, S2state, SO3state))
#define MTK_ENTRIES_TEST(r, state) MTK_TUPLE_ELEM_4_0 state
//! this used to be BOOST_PP_TUPLE_ELEM_4_0:
#define MTK_TUPLE_ELEM_4_0(a,b,c,d,e,f, g) a
#define MTK_ENTRIES_NEXT(r, state) MTK_ENTRIES_NEXT_I state
#define MTK_ENTRIES_NEXT_I(len, head, seq, dof, dim, S2state, SO3state) ( \
BOOST_PP_DEC(len), \
BOOST_PP_SEQ_HEAD(seq), \
BOOST_PP_SEQ_TAIL(seq), \
dof + BOOST_PP_TUPLE_ELEM_2_0 head::DOF,\
dim + BOOST_PP_TUPLE_ELEM_2_0 head::DIM,\
S2state,\
SO3state)
#endif /* not PARSED_BY_DOXYGEN */
/**
* Construct a manifold.
* @param name is the class-name of the manifold,
* @param entries is the list of sub manifolds
*
* Entries must be given in a list like this:
* @code
* typedef MTK::trafo<MTK::SO3<double> > Pose;
* typedef MTK::vect<double, 3> Vec3;
* MTK_BUILD_MANIFOLD(imu_state,
* ((Pose, pose))
* ((Vec3, vel))
* ((Vec3, acc_bias))
* )
* @endcode
* Whitespace is optional, but the double parentheses are necessary.
* Construction is done entirely in preprocessor.
* After construction @a name is also a manifold. Its members can be
* accessed by names given in @a entries.
*
* @note Variable types are not allowed to have commas, thus types like
* @c vect<double, 3> need to be typedef'ed ahead.
*/
#define MTK_BUILD_MANIFOLD(name, entries) \
struct name { \
typedef name self; \
std::vector<std::pair<int, int> > S2_state;\
std::vector<std::pair<int, int> > SO3_state;\
std::vector<std::pair<std::pair<int, int>, int> > vect_state;\
MTK_SUBVARLIST(entries, S2_state, SO3_state) \
name ( \
MTK_TRANSFORM_COMMA(MTK_CONSTRUCTOR_ARG, entries) \
) : \
MTK_TRANSFORM_COMMA(MTK_CONSTRUCTOR_COPY, entries) {}\
int getDOF() const { return DOF; } \
void boxplus(const MTK::vectview<const scalar, DOF> & __vec, scalar __scale = 1 ) { \
MTK_TRANSFORM(MTK_BOXPLUS, entries)\
} \
void oplus(const MTK::vectview<const scalar, DIM> & __vec, scalar __scale = 1 ) { \
MTK_TRANSFORM(MTK_OPLUS, entries)\
} \
void boxminus(MTK::vectview<scalar,DOF> __res, const name& __oth) const { \
MTK_TRANSFORM(MTK_BOXMINUS, entries)\
} \
friend std::ostream& operator<<(std::ostream& __os, const name& __var){ \
return __os MTK_TRANSFORM(MTK_OSTREAM, entries); \
} \
void build_S2_state(){\
MTK_TRANSFORM(MTK_S2_state, entries)\
}\
void build_vect_state(){\
MTK_TRANSFORM(MTK_vect_state, entries)\
}\
void build_SO3_state(){\
MTK_TRANSFORM(MTK_SO3_state, entries)\
}\
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res, int idx) {\
MTK_TRANSFORM(MTK_S2_hat, entries)\
}\
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res, int idx) {\
MTK_TRANSFORM(MTK_S2_Nx_yy, entries)\
}\
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, Eigen::Matrix<scalar, 2, 1> dx, int idx) {\
MTK_TRANSFORM(MTK_S2_Mx, entries)\
}\
friend std::istream& operator>>(std::istream& __is, name& __var){ \
return __is MTK_TRANSFORM(MTK_ISTREAM, entries); \
} \
};
#endif /*MTK_AUTOCONSTRUCT_HPP_*/

View File

@@ -0,0 +1,123 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/src/SubManifold.hpp
* @brief Defines the SubManifold class
*/
#ifndef SUBMANIFOLD_HPP_
#define SUBMANIFOLD_HPP_
#include "vectview.hpp"
namespace MTK {
/**
* @ingroup SubManifolds
* Helper class for compound manifolds.
* This class wraps a manifold T and provides an enum IDX refering to the
* index of the SubManifold within the compound manifold.
*
* Memberpointers to a submanifold can be used for @ref SubManifolds "functions accessing submanifolds".
*
* @tparam T The manifold type of the sub-type
* @tparam idx The index of the sub-type within the compound manifold
*/
template<class T, int idx, int dim>
struct SubManifold : public T
{
enum {IDX = idx, DIM = dim /*!< index of the sub-type within the compound manifold */ };
//! manifold type
typedef T type;
//! Construct from derived type
template<class X>
explicit
SubManifold(const X& t) : T(t) {};
//! Construct from internal type
//explicit
SubManifold(const T& t) : T(t) {};
//! inherit assignment operator
using T::operator=;
};
} // namespace MTK
#endif /* SUBMANIFOLD_HPP_ */

View File

@@ -0,0 +1,294 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/src/mtkmath.hpp
* @brief several math utility functions.
*/
#ifndef MTKMATH_H_
#define MTKMATH_H_
#include <cmath>
#include <boost/math/tools/precision.hpp>
#include "../types/vect.hpp"
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
namespace MTK {
namespace internal {
template<class Manifold>
struct traits {
typedef typename Manifold::scalar scalar;
enum {DOF = Manifold::DOF};
typedef vect<DOF, scalar> vectorized_type;
typedef Eigen::Matrix<scalar, DOF, DOF> matrix_type;
};
template<>
struct traits<float> : traits<Scalar<float> > {};
template<>
struct traits<double> : traits<Scalar<double> > {};
} // namespace internal
/**
* \defgroup MTKMath Mathematical helper functions
*/
//@{
//! constant @f$ \pi @f$
const double pi = M_PI;
template<class scalar> inline scalar tolerance();
template<> inline float tolerance<float >() { return 1e-5f; }
template<> inline double tolerance<double>() { return 1e-11; }
/**
* normalize @a x to @f$[-bound, bound] @f$.
*
* result for @f$ x = bound + 2\cdot n\cdot bound @f$ is arbitrary @f$\pm bound @f$.
*/
template<class scalar>
inline scalar normalize(scalar x, scalar bound){ //not used
if(std::fabs(x) <= bound) return x;
int r = (int)(x *(scalar(1.0)/ bound));
return x - ((r + (r>>31) + 1) & ~1)*bound;
}
/**
* Calculate cosine and sinc of sqrt(x2).
* @param x2 the squared angle must be non-negative
* @return a pair containing cos and sinc of sqrt(x2)
*/
template<class scalar>
std::pair<scalar, scalar> cos_sinc_sqrt(const scalar &x2){
using std::sqrt;
using std::cos;
using std::sin;
static scalar const taylor_0_bound = boost::math::tools::epsilon<scalar>();
static scalar const taylor_2_bound = sqrt(taylor_0_bound);
static scalar const taylor_n_bound = sqrt(taylor_2_bound);
assert(x2>=0 && "argument must be non-negative");
// FIXME check if bigger bounds are possible
if(x2>=taylor_n_bound) {
// slow fall-back solution
scalar x = sqrt(x2);
return std::make_pair(cos(x), sin(x)/x); // x is greater than 0.
}
// FIXME Replace by Horner-Scheme (4 instead of 5 FLOP/term, numerically more stable, theoretically cos and sinc can be calculated in parallel using SSE2 mulpd/addpd)
// TODO Find optimal coefficients using Remez algorithm
static scalar const inv[] = {1/3., 1/4., 1/5., 1/6., 1/7., 1/8., 1/9.};
scalar cosi = 1., sinc=1;
scalar term = -1/2. * x2;
for(int i=0; i<3; ++i) {
cosi += term;
term *= inv[2*i];
sinc += term;
term *= -inv[2*i+1] * x2;
}
return std::make_pair(cosi, sinc);
}
template<typename Base>
Eigen::Matrix<typename Base::scalar, 3, 3> hat(const Base& v) {
Eigen::Matrix<typename Base::scalar, 3, 3> res;
res << 0, -v[2], v[1],
v[2], 0, -v[0],
-v[1], v[0], 0;
return res;
}
template<typename Base>
Eigen::Matrix<typename Base::scalar, 3, 3> A_inv_trans(const Base& v){
Eigen::Matrix<typename Base::scalar, 3, 3> res;
if(v.norm() > MTK::tolerance<typename Base::scalar>())
{
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity() + 0.5 * hat<Base>(v) + (1 - v.norm() * std::cos(v.norm() / 2) / 2 / std::sin(v.norm() / 2)) * hat(v) * hat(v) / v.squaredNorm();
}
else
{
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity();
}
return res;
}
template<typename Base>
Eigen::Matrix<typename Base::scalar, 3, 3> A_inv(const Base& v){
Eigen::Matrix<typename Base::scalar, 3, 3> res;
if(v.norm() > MTK::tolerance<typename Base::scalar>())
{
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity() - 0.5 * hat<Base>(v) + (1 - v.norm() * std::cos(v.norm() / 2) / 2 / std::sin(v.norm() / 2)) * hat(v) * hat(v) / v.squaredNorm();
}
else
{
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity();
}
return res;
}
template<typename scalar>
Eigen::Matrix<scalar, 2, 3> S2_w_expw_( Eigen::Matrix<scalar, 2, 1> v, scalar length)
{
Eigen::Matrix<scalar, 2, 3> res;
scalar norm = std::sqrt(v[0]*v[0] + v[1]*v[1]);
if(norm < MTK::tolerance<scalar>()){
res = Eigen::Matrix<scalar, 2, 3>::Zero();
res(0, 1) = 1;
res(1, 2) = 1;
res /= length;
}
else{
res << -v[0]*(1/norm-1/std::tan(norm))/std::sin(norm), norm/std::sin(norm), 0,
-v[1]*(1/norm-1/std::tan(norm))/std::sin(norm), 0, norm/std::sin(norm);
res /= length;
}
}
template<typename Base>
Eigen::Matrix<typename Base::scalar, 3, 3> A_matrix(const Base & v){
Eigen::Matrix<typename Base::scalar, 3, 3> res;
double squaredNorm = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
double norm = std::sqrt(squaredNorm);
if(norm < MTK::tolerance<typename Base::scalar>()){
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity();
}
else{
res = Eigen::Matrix<typename Base::scalar, 3, 3>::Identity() + (1 - std::cos(norm)) / squaredNorm * hat(v) + (1 - std::sin(norm) / norm) / squaredNorm * hat(v) * hat(v);
}
return res;
}
template<class scalar, int n>
scalar exp(vectview<scalar, n> result, vectview<const scalar, n> vec, const scalar& scale = 1) {
scalar norm2 = vec.squaredNorm();
std::pair<scalar, scalar> cos_sinc = cos_sinc_sqrt(scale*scale * norm2);
scalar mult = cos_sinc.second * scale;
result = mult * vec;
return cos_sinc.first;
}
/**
* Inverse function to @c exp.
*
* @param result @c vectview to the result
* @param w scalar part of input
* @param vec vector part of input
* @param scale scale result by this value
* @param plus_minus_periodicity if true values @f$[w, vec]@f$ and @f$[-w, -vec]@f$ give the same result
*/
template<class scalar, int n>
void log(vectview<scalar, n> result,
const scalar &w, const vectview<const scalar, n> vec,
const scalar &scale, bool plus_minus_periodicity)
{
// FIXME implement optimized case for vec.squaredNorm() <= tolerance() * (w*w) via Rational Remez approximation ~> only one division
scalar nv = vec.norm();
if(nv < tolerance<scalar>()) {
if(!plus_minus_periodicity && w < 0) {
// find the maximal entry:
int i;
nv = vec.cwiseAbs().maxCoeff(&i);
result = scale * std::atan2(nv, w) * vect<n, scalar>::Unit(i);
return;
}
nv = tolerance<scalar>();
}
scalar s = scale / nv * (plus_minus_periodicity ? std::atan(nv / w) : std::atan2(nv, w) );
result = s * vec;
}
} // namespace MTK
#endif /* MTKMATH_H_ */

View File

@@ -0,0 +1,168 @@
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/src/vectview.hpp
* @brief Wrapper class around a pointer used as interface for plain vectors.
*/
#ifndef VECTVIEW_HPP_
#define VECTVIEW_HPP_
#include <Eigen/Core>
namespace MTK {
/**
* A view to a vector.
* Essentially, @c vectview is only a pointer to @c scalar but can be used directly in @c Eigen expressions.
* The dimension of the vector is given as template parameter and type-checked when used in expressions.
* Data has to be modifiable.
*
* @tparam scalar Scalar type of the vector.
* @tparam dim Dimension of the vector.
*
* @todo @c vectview can be replaced by simple inheritance of @c Eigen::Map, as soon as they get const-correct
*/
namespace internal {
template<class Base, class T1, class T2>
struct CovBlock {
typedef typename Eigen::Block<Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF>, T1::DOF, T2::DOF> Type;
typedef typename Eigen::Block<const Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF>, T1::DOF, T2::DOF> ConstType;
};
template<class Base, class T1, class T2>
struct CovBlock_ {
typedef typename Eigen::Block<Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM>, T1::DIM, T2::DIM> Type;
typedef typename Eigen::Block<const Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM>, T1::DIM, T2::DIM> ConstType;
};
template<typename Base1, typename Base2, typename T1, typename T2>
struct CrossCovBlock {
typedef typename Eigen::Block<Eigen::Matrix<typename Base1::scalar, Base1::DOF, Base2::DOF>, T1::DOF, T2::DOF> Type;
typedef typename Eigen::Block<const Eigen::Matrix<typename Base1::scalar, Base1::DOF, Base2::DOF>, T1::DOF, T2::DOF> ConstType;
};
template<typename Base1, typename Base2, typename T1, typename T2>
struct CrossCovBlock_ {
typedef typename Eigen::Block<Eigen::Matrix<typename Base1::scalar, Base1::DIM, Base2::DIM>, T1::DIM, T2::DIM> Type;
typedef typename Eigen::Block<const Eigen::Matrix<typename Base1::scalar, Base1::DIM, Base2::DIM>, T1::DIM, T2::DIM> ConstType;
};
template<class scalar, int dim>
struct VectviewBase {
typedef Eigen::Matrix<scalar, dim, 1> matrix_type;
typedef typename matrix_type::MapType Type;
typedef typename matrix_type::ConstMapType ConstType;
};
template<class T>
struct UnalignedType {
typedef T type;
};
}
template<class scalar, int dim>
class vectview : public internal::VectviewBase<scalar, dim>::Type {
typedef internal::VectviewBase<scalar, dim> VectviewBase;
public:
//! plain matrix type
typedef typename VectviewBase::matrix_type matrix_type;
//! base type
typedef typename VectviewBase::Type base;
//! construct from pointer
explicit
vectview(scalar* data, int dim_=dim) : base(data, dim_) {}
//! construct from plain matrix
vectview(matrix_type& m) : base(m.data(), m.size()) {}
//! construct from another @c vectview
vectview(const vectview &v) : base(v) {}
//! construct from Eigen::Block:
template<class Base>
vectview(Eigen::VectorBlock<Base, dim> block) : base(&block.coeffRef(0), block.size()) {}
template<class Base, bool PacketAccess>
vectview(Eigen::Block<Base, dim, 1, PacketAccess> block) : base(&block.coeffRef(0), block.size()) {}
//! inherit assignment operator
using base::operator=;
//! data pointer
scalar* data() {return const_cast<scalar*>(base::data());}
};
/**
* @c const version of @c vectview.
* Compared to @c Eigen::Map this implementation is const correct, i.e.,
* data will not be modifiable using this view.
*
* @tparam scalar Scalar type of the vector.
* @tparam dim Dimension of the vector.
*
* @sa vectview
*/
template<class scalar, int dim>
class vectview<const scalar, dim> : public internal::VectviewBase<scalar, dim>::ConstType {
typedef internal::VectviewBase<scalar, dim> VectviewBase;
public:
//! plain matrix type
typedef typename VectviewBase::matrix_type matrix_type;
//! base type
typedef typename VectviewBase::ConstType base;
//! construct from const pointer
explicit
vectview(const scalar* data, int dim_ = dim) : base(data, dim_) {}
//! construct from column vector
template<int options>
vectview(const Eigen::Matrix<scalar, dim, 1, options>& m) : base(m.data()) {}
//! construct from row vector
template<int options, int phony>
vectview(const Eigen::Matrix<scalar, 1, dim, options, phony>& m) : base(m.data()) {}
//! construct from another @c vectview
vectview(vectview<scalar, dim> x) : base(x.data()) {}
//! construct from base
vectview(const base &x) : base(x) {}
/**
* Construct from Block
* @todo adapt this, when Block gets const-correct
*/
template<class Base>
vectview(Eigen::VectorBlock<Base, dim> block) : base(&block.coeffRef(0)) {}
template<class Base, bool PacketAccess>
vectview(Eigen::Block<Base, dim, 1, PacketAccess> block) : base(&block.coeffRef(0)) {}
};
} // namespace MTK
#endif /* VECTVIEW_HPP_ */

View File

@@ -0,0 +1,328 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/startIdx.hpp
* @brief Tools to access sub-elements of compound manifolds.
*/
#ifndef GET_START_INDEX_H_
#define GET_START_INDEX_H_
#include <Eigen/Core>
#include "src/SubManifold.hpp"
#include "src/vectview.hpp"
namespace MTK {
/**
* \defgroup SubManifolds Accessing Submanifolds
* For compound manifolds constructed using MTK_BUILD_MANIFOLD, member pointers
* can be used to get sub-vectors or matrix-blocks of a corresponding big matrix.
* E.g. for a type @a pose consisting of @a orient and @a trans the member pointers
* @c &pose::orient and @c &pose::trans give all required information and are still
* valid if the base type gets extended or the actual types of @a orient and @a trans
* change (e.g. from 2D to 3D).
*
* @todo Maybe require manifolds to typedef MatrixType and VectorType, etc.
*/
//@{
/**
* Determine the index of a sub-variable within a compound variable.
*/
template<class Base, class T, int idx, int dim>
int getStartIdx( MTK::SubManifold<T, idx, dim> Base::*)
{
return idx;
}
template<class Base, class T, int idx, int dim>
int getStartIdx_( MTK::SubManifold<T, idx, dim> Base::*)
{
return dim;
}
/**
* Determine the degrees of freedom of a sub-variable within a compound variable.
*/
template<class Base, class T, int idx, int dim>
int getDof( MTK::SubManifold<T, idx, dim> Base::*)
{
return T::DOF;
}
template<class Base, class T, int idx, int dim>
int getDim( MTK::SubManifold<T, idx, dim> Base::*)
{
return T::DIM;
}
/**
* set the diagonal elements of a covariance matrix corresponding to a sub-variable
*/
template<class Base, class T, int idx, int dim>
void setDiagonal(Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF> &cov,
MTK::SubManifold<T, idx, dim> Base::*, const typename Base::scalar &val)
{
cov.diagonal().template segment<T::DOF>(idx).setConstant(val);
}
template<class Base, class T, int idx, int dim>
void setDiagonal_(Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM> &cov,
MTK::SubManifold<T, idx, dim> Base::*, const typename Base::scalar &val)
{
cov.diagonal().template segment<T::DIM>(dim).setConstant(val);
}
/**
* Get the subblock of corresponding to two members, i.e.
* \code
* Eigen::Matrix<double, Pose::DOF, Pose::DOF> m;
* MTK::subblock(m, &Pose::orient, &Pose::trans) = some_expression;
* MTK::subblock(m, &Pose::trans, &Pose::orient) = some_expression.trans();
* \endcode
* lets you modify mixed covariance entries in a bigger covariance matrix.
*/
template<class Base, class T1, int idx1, int dim1, class T2, int idx2, int dim2>
typename MTK::internal::CovBlock<Base, T1, T2>::Type
subblock(Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF> &cov,
MTK::SubManifold<T1, idx1, dim1> Base::*, MTK::SubManifold<T2, idx2, dim2> Base::*)
{
return cov.template block<T1::DOF, T2::DOF>(idx1, idx2);
}
template<class Base, class T1, int idx1, int dim1, class T2, int idx2, int dim2>
typename MTK::internal::CovBlock_<Base, T1, T2>::Type
subblock_(Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM> &cov,
MTK::SubManifold<T1, idx1, dim1> Base::*, MTK::SubManifold<T2, idx2, dim2> Base::*)
{
return cov.template block<T1::DIM, T2::DIM>(dim1, dim2);
}
template<typename Base1, typename Base2, typename T1, typename T2, int idx1, int idx2, int dim1, int dim2>
typename MTK::internal::CrossCovBlock<Base1, Base2, T1, T2>::Type
subblock(Eigen::Matrix<typename Base1::scalar, Base1::DOF, Base2::DOF> &cov, MTK::SubManifold<T1, idx1, dim1> Base1::*, MTK::SubManifold<T2, idx2, dim2> Base2::*)
{
return cov.template block<T1::DOF, T2::DOF>(idx1, idx2);
}
template<typename Base1, typename Base2, typename T1, typename T2, int idx1, int idx2, int dim1, int dim2>
typename MTK::internal::CrossCovBlock_<Base1, Base2, T1, T2>::Type
subblock_(Eigen::Matrix<typename Base1::scalar, Base1::DIM, Base2::DIM> &cov, MTK::SubManifold<T1, idx1, dim1> Base1::*, MTK::SubManifold<T2, idx2, dim2> Base2::*)
{
return cov.template block<T1::DIM, T2::DIM>(dim1, dim2);
}
/**
* Get the subblock of corresponding to a member, i.e.
* \code
* Eigen::Matrix<double, Pose::DOF, Pose::DOF> m;
* MTK::subblock(m, &Pose::orient) = some_expression;
* \endcode
* lets you modify covariance entries in a bigger covariance matrix.
*/
template<class Base, class T, int idx, int dim>
typename MTK::internal::CovBlock_<Base, T, T>::Type
subblock_(Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM> &cov,
MTK::SubManifold<T, idx, dim> Base::*)
{
return cov.template block<T::DIM, T::DIM>(dim, dim);
}
template<class Base, class T, int idx, int dim>
typename MTK::internal::CovBlock<Base, T, T>::Type
subblock(Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF> &cov,
MTK::SubManifold<T, idx, dim> Base::*)
{
return cov.template block<T::DOF, T::DOF>(idx, idx);
}
template<typename Base>
class get_cov {
public:
typedef Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF> type;
typedef const Eigen::Matrix<typename Base::scalar, Base::DOF, Base::DOF> const_type;
};
template<typename Base>
class get_cov_ {
public:
typedef Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM> type;
typedef const Eigen::Matrix<typename Base::scalar, Base::DIM, Base::DIM> const_type;
};
template<typename Base1, typename Base2>
class get_cross_cov {
public:
typedef Eigen::Matrix<typename Base1::scalar, Base1::DOF, Base2::DOF> type;
typedef const type const_type;
};
template<typename Base1, typename Base2>
class get_cross_cov_ {
public:
typedef Eigen::Matrix<typename Base1::scalar, Base1::DIM, Base2::DIM> type;
typedef const type const_type;
};
template<class Base, class T, int idx, int dim>
vectview<typename Base::scalar, T::DIM>
subvector_impl_(vectview<typename Base::scalar, Base::DIM> vec, SubManifold<T, idx, dim> Base::*)
{
return vec.template segment<T::DIM>(dim);
}
template<class Base, class T, int idx, int dim>
vectview<typename Base::scalar, T::DOF>
subvector_impl(vectview<typename Base::scalar, Base::DOF> vec, SubManifold<T, idx, dim> Base::*)
{
return vec.template segment<T::DOF>(idx);
}
/**
* Get the subvector corresponding to a sub-manifold from a bigger vector.
*/
template<class Scalar, int BaseDIM, class Base, class T, int idx, int dim>
vectview<Scalar, T::DIM>
subvector_(vectview<Scalar, BaseDIM> vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl_(vec, ptr);
}
template<class Scalar, int BaseDOF, class Base, class T, int idx, int dim>
vectview<Scalar, T::DOF>
subvector(vectview<Scalar, BaseDOF> vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl(vec, ptr);
}
/**
* @todo This should be covered already by subvector(vectview<typename Base::scalar,Base::DOF> vec,SubManifold<T,idx> Base::*)
*/
template<class Scalar, int BaseDOF, class Base, class T, int idx, int dim>
vectview<Scalar, T::DOF>
subvector(Eigen::Matrix<Scalar, BaseDOF, 1>& vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl(vectview<Scalar, BaseDOF>(vec), ptr);
}
template<class Scalar, int BaseDIM, class Base, class T, int idx, int dim>
vectview<Scalar, T::DIM>
subvector_(Eigen::Matrix<Scalar, BaseDIM, 1>& vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl_(vectview<Scalar, BaseDIM>(vec), ptr);
}
template<class Scalar, int BaseDIM, class Base, class T, int idx, int dim>
vectview<const Scalar, T::DIM>
subvector_(const Eigen::Matrix<Scalar, BaseDIM, 1>& vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl_(vectview<const Scalar, BaseDIM>(vec), ptr);
}
template<class Scalar, int BaseDOF, class Base, class T, int idx, int dim>
vectview<const Scalar, T::DOF>
subvector(const Eigen::Matrix<Scalar, BaseDOF, 1>& vec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl(vectview<const Scalar, BaseDOF>(vec), ptr);
}
/**
* const version of subvector(vectview<typename Base::scalar,Base::DOF> vec,SubManifold<T,idx> Base::*)
*/
template<class Base, class T, int idx, int dim>
vectview<const typename Base::scalar, T::DOF>
subvector_impl(const vectview<const typename Base::scalar, Base::DOF> cvec, SubManifold<T, idx, dim> Base::*)
{
return cvec.template segment<T::DOF>(idx);
}
template<class Base, class T, int idx, int dim>
vectview<const typename Base::scalar, T::DIM>
subvector_impl_(const vectview<const typename Base::scalar, Base::DIM> cvec, SubManifold<T, idx, dim> Base::*)
{
return cvec.template segment<T::DIM>(dim);
}
template<class Scalar, int BaseDOF, class Base, class T, int idx, int dim>
vectview<const Scalar, T::DOF>
subvector(const vectview<const Scalar, BaseDOF> cvec, SubManifold<T, idx, dim> Base::* ptr)
{
return subvector_impl(cvec, ptr);
}
} // namespace MTK
#endif // GET_START_INDEX_H_

View File

@@ -0,0 +1,316 @@
// This is a NEW implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/types/S2.hpp
* @brief Unit vectors on the sphere, or directions in 3D.
*/
#ifndef S2_H_
#define S2_H_
#include "vect.hpp"
#include "SOn.hpp"
#include "../src/mtkmath.hpp"
namespace MTK {
/**
* Manifold representation of @f$ S^2 @f$.
* Used for unit vectors on the sphere or directions in 3D.
*
* @todo add conversions from/to polar angles?
*/
template<class _scalar = double, int den = 1, int num = 1, int S2_typ = 3>
struct S2 {
typedef _scalar scalar;
typedef vect<3, scalar> vect_type;
typedef SO3<scalar> SO3_type;
typedef typename vect_type::base vec3;
scalar length = scalar(den)/scalar(num);
enum {DOF=2, TYP = 1, DIM = 3};
//private:
/**
* Unit vector on the sphere, or vector pointing in a direction
*/
vect_type vec;
public:
S2() {
if(S2_typ == 3) vec=length * vec3(0, 0, std::sqrt(1));
if(S2_typ == 2) vec=length * vec3(0, std::sqrt(1), 0);
if(S2_typ == 1) vec=length * vec3(std::sqrt(1), 0, 0);
}
S2(const scalar &x, const scalar &y, const scalar &z) : vec(vec3(x, y, z)) {
vec.normalize();
vec = vec * length;
}
S2(const vect_type &_vec) : vec(_vec) {
vec.normalize();
vec = vec * length;
}
void oplus(MTK::vectview<const scalar, 3> delta, scalar scale = 1)
{
SO3_type res;
res.w() = MTK::exp<scalar, 3>(res.vec(), delta, scalar(scale/2));
vec = res.toRotationMatrix() * vec;
}
void boxplus(MTK::vectview<const scalar, 2> delta, scalar scale=1) {
Eigen::Matrix<scalar, 3, 2> Bx;
S2_Bx(Bx);
vect_type Bu = Bx*delta;SO3_type res;
res.w() = MTK::exp<scalar, 3>(res.vec(), Bu, scalar(scale/2));
vec = res.toRotationMatrix() * vec;
}
void boxminus(MTK::vectview<scalar, 2> res, const S2<scalar, den, num, S2_typ>& other) const {
scalar v_sin = (MTK::hat(vec)*other.vec).norm();
scalar v_cos = vec.transpose() * other.vec;
scalar theta = std::atan2(v_sin, v_cos);
if(v_sin < MTK::tolerance<scalar>())
{
if(std::fabs(theta) > MTK::tolerance<scalar>() )
{
res[0] = 3.1415926;
res[1] = 0;
}
else{
res[0] = 0;
res[1] = 0;
}
}
else
{
S2<scalar, den, num, S2_typ> other_copy = other;
Eigen::Matrix<scalar, 3, 2>Bx;
other_copy.S2_Bx(Bx);
res = theta/v_sin * Bx.transpose() * MTK::hat(other.vec)*vec;
}
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
Eigen::Matrix<scalar, 3, 3> skew_vec;
skew_vec << scalar(0), -vec[2], vec[1],
vec[2], scalar(0), -vec[0],
-vec[1], vec[0], scalar(0);
res = skew_vec;
}
void S2_Bx(Eigen::Matrix<scalar, 3, 2> &res)
{
if(S2_typ == 3)
{
if(vec[2] + length > tolerance<scalar>())
{
res << length - vec[0]*vec[0]/(length+vec[2]), -vec[0]*vec[1]/(length+vec[2]),
-vec[0]*vec[1]/(length+vec[2]), length-vec[1]*vec[1]/(length+vec[2]),
-vec[0], -vec[1];
res /= length;
}
else
{
res = Eigen::Matrix<scalar, 3, 2>::Zero();
res(1, 1) = -1;
res(2, 0) = 1;
}
}
else if(S2_typ == 2)
{
if(vec[1] + length > tolerance<scalar>())
{
res << length - vec[0]*vec[0]/(length+vec[1]), -vec[0]*vec[2]/(length+vec[1]),
-vec[0], -vec[2],
-vec[0]*vec[2]/(length+vec[1]), length-vec[2]*vec[2]/(length+vec[1]);
res /= length;
}
else
{
res = Eigen::Matrix<scalar, 3, 2>::Zero();
res(1, 1) = -1;
res(2, 0) = 1;
}
}
else
{
if(vec[0] + length > tolerance<scalar>())
{
res << -vec[1], -vec[2],
length - vec[1]*vec[1]/(length+vec[0]), -vec[2]*vec[1]/(length+vec[0]),
-vec[2]*vec[1]/(length+vec[0]), length-vec[2]*vec[2]/(length+vec[0]);
res /= length;
}
else
{
res = Eigen::Matrix<scalar, 3, 2>::Zero();
res(1, 1) = -1;
res(2, 0) = 1;
}
}
}
void S2_Nx(Eigen::Matrix<scalar, 2, 3> &res, S2<scalar, den, num, S2_typ>& subtrahend)
{
if((vec+subtrahend.vec).norm() > tolerance<scalar>())
{
Eigen::Matrix<scalar, 3, 2> Bx;
S2_Bx(Bx);
if((vec-subtrahend.vec).norm() > tolerance<scalar>())
{
scalar v_sin = (MTK::hat(vec)*subtrahend.vec).norm();
scalar v_cos = vec.transpose() * subtrahend.vec;
res = Bx.transpose() * (std::atan2(v_sin, v_cos)/v_sin*MTK::hat(vec)+MTK::hat(vec)*subtrahend.vec*((-v_cos/v_sin/v_sin/length/length/length/length+std::atan2(v_sin, v_cos)/v_sin/v_sin/v_sin)*subtrahend.vec.transpose()*MTK::hat(vec)*MTK::hat(vec)-vec.transpose()/length/length/length/length));
}
else
{
res = 1/length/length*Bx.transpose()*MTK::hat(vec);
}
}
else
{
std::cerr << "No N(x, y) for x=-y" << std::endl;
std::exit(100);
}
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
Eigen::Matrix<scalar, 3, 2> Bx;
S2_Bx(Bx);
res = 1/length/length*Bx.transpose()*MTK::hat(vec);
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
Eigen::Matrix<scalar, 3, 2> Bx;
S2_Bx(Bx);
if(delta.norm() < tolerance<scalar>())
{
res = -MTK::hat(vec)*Bx;
}
else{
vect_type Bu = Bx*delta;
SO3_type exp_delta;
exp_delta.w() = MTK::exp<scalar, 3>(exp_delta.vec(), Bu, scalar(1/2));
res = -exp_delta.toRotationMatrix()*MTK::hat(vec)*MTK::A_matrix(Bu).transpose()*Bx;
}
}
operator const vect_type&() const{
return vec;
}
const vect_type& get_vect() const {
return vec;
}
friend S2<scalar, den, num, S2_typ> operator*(const SO3<scalar>& rot, const S2<scalar, den, num, S2_typ>& dir)
{
S2<scalar, den, num, S2_typ> ret;
ret.vec = rot * dir.vec;
return ret;
}
scalar operator[](int idx) const {return vec[idx]; }
friend std::ostream& operator<<(std::ostream &os, const S2<scalar, den, num, S2_typ>& vec){
return os << vec.vec.transpose() << " ";
}
friend std::istream& operator>>(std::istream &is, S2<scalar, den, num, S2_typ>& vec){
for(int i=0; i<3; ++i)
is >> vec.vec[i];
vec.vec.normalize();
vec.vec = vec.vec * vec.length;
return is;
}
};
} // namespace MTK
#endif /*S2_H_*/

View File

@@ -0,0 +1,317 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/types/SOn.hpp
* @brief Standard Orthogonal Groups i.e.\ rotatation groups.
*/
#ifndef SON_H_
#define SON_H_
#include <Eigen/Geometry>
#include "vect.hpp"
#include "../src/mtkmath.hpp"
namespace MTK {
/**
* Two-dimensional orientations represented as scalar.
* There is no guarantee that the representing scalar is within any interval,
* but the result of boxminus will always have magnitude @f$\le\pi @f$.
*/
template<class _scalar = double, int Options = Eigen::AutoAlign>
struct SO2 : public Eigen::Rotation2D<_scalar> {
enum {DOF = 1, DIM = 2, TYP = 3};
typedef _scalar scalar;
typedef Eigen::Rotation2D<scalar> base;
typedef vect<DIM, scalar, Options> vect_type;
//! Construct from angle
SO2(const scalar& angle = 0) : base(angle) { }
//! Construct from Eigen::Rotation2D
SO2(const base& src) : base(src) {}
/**
* Construct from 2D vector.
* Resulting orientation will rotate the first unit vector to point to vec.
*/
SO2(const vect_type &vec) : base(atan2(vec[1], vec[0])) {};
//! Calculate @c this->inverse() * @c r
SO2 operator%(const base &r) const {
return base::inverse() * r;
}
//! Calculate @c this->inverse() * @c r
template<class Derived>
vect_type operator%(const Eigen::MatrixBase<Derived> &vec) const {
return base::inverse() * vec;
}
//! Calculate @c *this * @c r.inverse()
SO2 operator/(const SO2 &r) const {
return *this * r.inverse();
}
//! Gets the angle as scalar.
operator scalar() const {
return base::angle();
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
//! @name Manifold requirements
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
base::angle() += scale * vec[0];
}
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
base::angle() += scale * vec[0];
}
void boxminus(MTK::vectview<scalar, DOF> res, const SO2<scalar>& other) const {
res[0] = MTK::normalize(base::angle() - other.angle(), scalar(MTK::pi));
}
friend std::istream& operator>>(std::istream &is, SO2<scalar>& ang){
return is >> ang.angle();
}
};
/**
* Three-dimensional orientations represented as Quaternion.
* It is assumed that the internal Quaternion always stays normalized,
* should this not be the case, call inherited member function @c normalize().
*/
template<class _scalar = double, int Options = Eigen::AutoAlign>
struct SO3 : public Eigen::Quaternion<_scalar, Options> {
enum {DOF = 3, DIM = 3, TYP = 2};
typedef _scalar scalar;
typedef Eigen::Quaternion<scalar, Options> base;
typedef Eigen::Quaternion<scalar> Quaternion;
typedef vect<DIM, scalar, Options> vect_type;
//! Calculate @c this->inverse() * @c r
template<class OtherDerived> EIGEN_STRONG_INLINE
Quaternion operator%(const Eigen::QuaternionBase<OtherDerived> &r) const {
return base::conjugate() * r;
}
//! Calculate @c this->inverse() * @c r
template<class Derived>
vect_type operator%(const Eigen::MatrixBase<Derived> &vec) const {
return base::conjugate() * vec;
}
//! Calculate @c this * @c r.conjugate()
template<class OtherDerived> EIGEN_STRONG_INLINE
Quaternion operator/(const Eigen::QuaternionBase<OtherDerived> &r) const {
return *this * r.conjugate();
}
/**
* Construct from real part and three imaginary parts.
* Quaternion is normalized after construction.
*/
SO3(const scalar& w, const scalar& x, const scalar& y, const scalar& z) : base(w, x, y, z) {
base::normalize();
}
/**
* Construct from Eigen::Quaternion.
* @note Non-normalized input may result result in spurious behavior.
*/
SO3(const base& src = base::Identity()) : base(src) {}
/**
* Construct from rotation matrix.
* @note Invalid rotation matrices may lead to spurious behavior.
*/
template<class Derived>
SO3(const Eigen::MatrixBase<Derived>& matrix) : base(matrix) {}
/**
* Construct from arbitrary rotation type.
* @note Invalid rotation matrices may lead to spurious behavior.
*/
template<class Derived>
SO3(const Eigen::RotationBase<Derived, 3>& rotation) : base(rotation.derived()) {}
//! @name Manifold requirements
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale=1) {
SO3 delta = exp(vec, scale);
*this = *this * delta;
}
void boxminus(MTK::vectview<scalar, DOF> res, const SO3<scalar>& other) const {
res = SO3::log(other.conjugate() * *this);
}
//}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale=1) {
SO3 delta = exp(vec, scale);
*this = *this * delta;
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
friend std::ostream& operator<<(std::ostream &os, const SO3<scalar, Options>& q){
return os << q.coeffs().transpose() << " ";
}
friend std::istream& operator>>(std::istream &is, SO3<scalar, Options>& q){
vect<4,scalar> coeffs;
is >> coeffs;
q.coeffs() = coeffs.normalized();
return is;
}
//! @name Helper functions
//{
/**
* Calculate the exponential map. In matrix terms this would correspond
* to the Rodrigues formula.
*/
// FIXME vectview<> can't be constructed from every MatrixBase<>, use const Vector3x& as workaround
// static SO3 exp(MTK::vectview<const scalar, 3> dvec, scalar scale = 1){
static SO3 exp(const Eigen::Matrix<scalar, 3, 1>& dvec, scalar scale = 1){
SO3 res;
res.w() = MTK::exp<scalar, 3>(res.vec(), dvec, scalar(scale/2));
return res;
}
/**
* Calculate the inverse of @c exp.
* Only guarantees that <code>exp(log(x)) == x </code>
*/
static typename base::Vector3 log(const SO3 &orient){
typename base::Vector3 res;
MTK::log<scalar, 3>(res, orient.w(), orient.vec(), scalar(2), true);
return res;
}
};
namespace internal {
template<class Scalar, int Options>
struct UnalignedType<SO2<Scalar, Options > >{
typedef SO2<Scalar, Options | Eigen::DontAlign> type;
};
template<class Scalar, int Options>
struct UnalignedType<SO3<Scalar, Options > >{
typedef SO3<Scalar, Options | Eigen::DontAlign> type;
};
} // namespace internal
} // namespace MTK
#endif /*SON_H_*/

View File

@@ -0,0 +1,461 @@
// This is an advanced implementation of the algorithm described in the
// following paper:
// C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.
// CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119
/*
* Copyright (c) 2019--2023, The University of Hong Kong
* All rights reserved.
*
* Modifier: Dongjiao HE <hdj65822@connect.hku.hk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2008--2011, Universitaet Bremen
* All rights reserved.
*
* Author: Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mtk/types/vect.hpp
* @brief Basic vectors interpreted as manifolds.
*
* This file also implements a simple wrapper for matrices, for arbitrary scalars
* and for positive scalars.
*/
#ifndef VECT_H_
#define VECT_H_
#include <iosfwd>
#include <iostream>
#include <vector>
#include "../src/vectview.hpp"
namespace MTK {
static const Eigen::IOFormat IO_no_spaces(Eigen::StreamPrecision, Eigen::DontAlignCols, ",", ",", "", "", "[", "]");
/**
* A simple vector class.
* Implementation is basically a wrapper around Eigen::Matrix with manifold
* requirements added.
*/
template<int D = 3, class _scalar = double, int _Options=Eigen::AutoAlign>
struct vect : public Eigen::Matrix<_scalar, D, 1, _Options> {
typedef Eigen::Matrix<_scalar, D, 1, _Options> base;
enum {DOF = D, DIM = D, TYP = 0};
typedef _scalar scalar;
//using base::operator=;
/** Standard constructor. Sets all values to zero. */
vect(const base &src = base::Zero()) : base(src) {}
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE vect(const Eigen::DenseBase<OtherDerived>& other) : base(other) {}
/** Construct from memory. */
vect(const scalar* src, int size = DOF) : base(base::Map(src, size)) { }
void boxplus(MTK::vectview<const scalar, D> vec, scalar scale=1) {
*this += scale * vec;
}
void boxminus(MTK::vectview<scalar, D> res, const vect<D, scalar>& other) const {
res = *this - other;
}
void oplus(MTK::vectview<const scalar, D> vec, scalar scale=1) {
*this += scale * vec;
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
friend std::ostream& operator<<(std::ostream &os, const vect<D, scalar, _Options>& v){
// Eigen sometimes messes with the streams flags, so output manually:
for(int i=0; i<DOF; ++i)
os << v(i) << " ";
return os;
}
friend std::istream& operator>>(std::istream &is, vect<D, scalar, _Options>& v){
char term=0;
is >> std::ws; // skip whitespace
switch(is.peek()) {
case '(': term=')'; is.ignore(1); break;
case '[': term=']'; is.ignore(1); break;
case '{': term='}'; is.ignore(1); break;
default: break;
}
if(D==Eigen::Dynamic) {
assert(term !=0 && "Dynamic vectors must be embraced");
std::vector<scalar> temp;
while(is.good() && is.peek() != term) {
scalar x;
is >> x;
temp.push_back(x);
if(is.peek()==',') is.ignore(1);
}
v = vect::Map(temp.data(), temp.size());
} else
for(int i=0; i<v.size(); ++i){
is >> v[i];
if(is.peek()==',') { // ignore commas between values
is.ignore(1);
}
}
if(term!=0) {
char x;
is >> x;
if(x!=term) {
is.setstate(is.badbit);
// assert(x==term && "start and end bracket do not match!");
}
}
return is;
}
template<int dim>
vectview<scalar, dim> tail(){
BOOST_STATIC_ASSERT(0< dim && dim <= DOF);
return base::template tail<dim>();
}
template<int dim>
vectview<const scalar, dim> tail() const{
BOOST_STATIC_ASSERT(0< dim && dim <= DOF);
return base::template tail<dim>();
}
template<int dim>
vectview<scalar, dim> head(){
BOOST_STATIC_ASSERT(0< dim && dim <= DOF);
return base::template head<dim>();
}
template<int dim>
vectview<const scalar, dim> head() const{
BOOST_STATIC_ASSERT(0< dim && dim <= DOF);
return base::template head<dim>();
}
};
/**
* A simple matrix class.
* Implementation is basically a wrapper around Eigen::Matrix with manifold
* requirements added, i.e., matrix is viewed as a plain vector for that.
*/
template<int M, int N, class _scalar = double, int _Options = Eigen::Matrix<_scalar, M, N>::Options>
struct matrix : public Eigen::Matrix<_scalar, M, N, _Options> {
typedef Eigen::Matrix<_scalar, M, N, _Options> base;
enum {DOF = M * N, TYP = 4, DIM=0};
typedef _scalar scalar;
using base::operator=;
/** Standard constructor. Sets all values to zero. */
matrix() {
base::setZero();
}
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE matrix(const Eigen::MatrixBase<OtherDerived>& other) : base(other) {}
/** Construct from memory. */
matrix(const scalar* src) : base(src) { }
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
*this += scale * base::Map(vec.data());
}
void boxminus(MTK::vectview<scalar, DOF> res, const matrix& other) const {
base::Map(res.data()) = *this - other;
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
*this += scale * base::Map(vec.data());
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
friend std::ostream& operator<<(std::ostream &os, const matrix<M, N, scalar, _Options>& mat){
for(int i=0; i<DOF; ++i){
os << mat.data()[i] << " ";
}
return os;
}
friend std::istream& operator>>(std::istream &is, matrix<M, N, scalar, _Options>& mat){
for(int i=0; i<DOF; ++i){
is >> mat.data()[i];
}
return is;
}
};// @todo What if M / N = Eigen::Dynamic?
/**
* A simple scalar type.
*/
template<class _scalar = double>
struct Scalar {
enum {DOF = 1, TYP = 5, DIM=0};
typedef _scalar scalar;
scalar value;
Scalar(const scalar& value = scalar(0)) : value(value) {}
operator const scalar&() const { return value; }
operator scalar&() { return value; }
Scalar& operator=(const scalar& val) { value = val; return *this; }
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale=1) {
value += scale * vec[0];
}
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale=1) {
value += scale * vec[0];
}
void boxminus(MTK::vectview<scalar, DOF> res, const Scalar& other) const {
res[0] = *this - other;
}
};
/**
* Positive scalars.
* Boxplus is implemented using multiplication by @f$x\boxplus\delta = x\cdot\exp(\delta) @f$.
*/
template<class _scalar = double>
struct PositiveScalar {
enum {DOF = 1, TYP = 6, DIM=0};
typedef _scalar scalar;
scalar value;
PositiveScalar(const scalar& value = scalar(1)) : value(value) {
assert(value > scalar(0));
}
operator const scalar&() const { return value; }
PositiveScalar& operator=(const scalar& val) { assert(val>0); value = val; return *this; }
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
value *= std::exp(scale * vec[0]);
}
void boxminus(MTK::vectview<scalar, DOF> res, const PositiveScalar& other) const {
res[0] = std::log(*this / other);
}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
value *= std::exp(scale * vec[0]);
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
friend std::istream& operator>>(std::istream &is, PositiveScalar<scalar>& s){
is >> s.value;
assert(s.value > 0);
return is;
}
};
template<class _scalar = double>
struct Complex : public std::complex<_scalar>{
enum {DOF = 2, TYP = 7, DIM=0};
typedef _scalar scalar;
typedef std::complex<scalar> Base;
Complex(const Base& value) : Base(value) {}
Complex(const scalar& re = 0.0, const scalar& im = 0.0) : Base(re, im) {}
Complex(const MTK::vectview<const scalar, 2> &in) : Base(in[0], in[1]) {}
template<class Derived>
Complex(const Eigen::DenseBase<Derived> &in) : Base(in[0], in[1]) {}
void boxplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
Base::real() += scale * vec[0];
Base::imag() += scale * vec[1];
};
void boxminus(MTK::vectview<scalar, DOF> res, const Complex& other) const {
Complex diff = *this - other;
res << diff.real(), diff.imag();
}
void S2_hat(Eigen::Matrix<scalar, 3, 3> &res)
{
res = Eigen::Matrix<scalar, 3, 3>::Zero();
}
void oplus(MTK::vectview<const scalar, DOF> vec, scalar scale = 1) {
Base::real() += scale * vec[0];
Base::imag() += scale * vec[1];
};
void S2_Nx_yy(Eigen::Matrix<scalar, 2, 3> &res)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 2, 3>::Zero();
}
void S2_Mx(Eigen::Matrix<scalar, 3, 2> &res, MTK::vectview<const scalar, 2> delta)
{
std::cerr << "wrong idx for S2" << std::endl;
std::exit(100);
res = Eigen::Matrix<scalar, 3, 2>::Zero();
}
scalar squaredNorm() const {
return std::pow(Base::real(),2) + std::pow(Base::imag(),2);
}
const scalar& operator()(int i) const {
assert(0<=i && i<2 && "Index out of range");
return i==0 ? Base::real() : Base::imag();
}
scalar& operator()(int i){
assert(0<=i && i<2 && "Index out of range");
return i==0 ? Base::real() : Base::imag();
}
};
namespace internal {
template<int dim, class Scalar, int Options>
struct UnalignedType<vect<dim, Scalar, Options > >{
typedef vect<dim, Scalar, Options | Eigen::DontAlign> type;
};
} // namespace internal
} // namespace MTK
#endif /*VECT_H_*/

View File

@@ -0,0 +1,113 @@
/*
* Copyright (c) 2010--2011, Universitaet Bremen and DFKI GmbH
* All rights reserved.
*
* Author: Rene Wagner <rene.wagner@dfki.de>
* Christoph Hertzberg <chtz@informatik.uni-bremen.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Universitaet Bremen nor the DFKI GmbH
* nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WRAPPED_CV_MAT_HPP_
#define WRAPPED_CV_MAT_HPP_
#include <Eigen/Core>
#include <opencv/cv.h>
namespace MTK {
template<class f_type>
struct cv_f_type;
template<>
struct cv_f_type<double>
{
enum {value = CV_64F};
};
template<>
struct cv_f_type<float>
{
enum {value = CV_32F};
};
/**
* cv_mat wraps a CvMat around an Eigen Matrix
*/
template<int rows, int cols, class f_type = double>
class cv_mat : public matrix<rows, cols, f_type, cols==1 ? Eigen::ColMajor : Eigen::RowMajor>
{
typedef matrix<rows, cols, f_type, cols==1 ? Eigen::ColMajor : Eigen::RowMajor> base_type;
enum {type_ = cv_f_type<f_type>::value};
CvMat cv_mat_;
public:
cv_mat()
{
cv_mat_ = cvMat(rows, cols, type_, base_type::data());
}
cv_mat(const cv_mat& oth) : base_type(oth)
{
cv_mat_ = cvMat(rows, cols, type_, base_type::data());
}
template<class Derived>
cv_mat(const Eigen::MatrixBase<Derived> &value) : base_type(value)
{
cv_mat_ = cvMat(rows, cols, type_, base_type::data());
}
template<class Derived>
cv_mat& operator=(const Eigen::MatrixBase<Derived> &value)
{
base_type::operator=(value);
return *this;
}
cv_mat& operator=(const cv_mat& value)
{
base_type::operator=(value);
return *this;
}
// FIXME: Maybe overloading operator& is not a good idea ...
CvMat* operator&()
{
return &cv_mat_;
}
const CvMat* operator&() const
{
return &cv_mat_;
}
};
} // namespace MTK
#endif /* WRAPPED_CV_MAT_HPP_ */